SES:PREMIERE ANNEE S4

EXERCICE 1: 3 POINTS

Cocher la bonne réponse :

1- la valeur numérique de l'expression $x^2 + 4x - 1$ pour x = -1 est :

 $2 \sim (1 + \sqrt{2})^3 =$

a) $\Box 1 + 2\sqrt{2}$

b) □ $1 + 5\sqrt{2}$

c) $\Box 7 + 5\sqrt{2}$

3~ a et b deux réels alors $a^3 - b^3 =$

a) $\Box (a-b)(a^2+b^2)$ b) $\Box (a-b)(a^2+ab-b^2)$ c) $\Box (a-b)(a^2+ab+b^2)$

EXERCICE 2 : 7 POINTS — les trois questions sont indépendantes ~

1~ Factoriser les expressions suivantes :

• $A = 4x^2 - 25$

• B = $x^3 + 8$ • C = $x^3 - 3\sqrt{2}x^2 + 6x - 2\sqrt{2}$

2~ Résoudre dans $\mathbb R$ les équations suivantes :

• 3x+2=-x+4

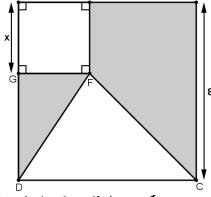
 \bullet $(x-2)(4x+5)+x^3-8=0$

 3^{2} x est un angle aigu . montrer les relations suivantes : tan^{2} x $- sin^{2}$ x $- sin^{2$

EXERCICE 3: 5 POINTS

ABCD et AEFG deux carrés. AB = 8 cm et AE = AG= x avec $0 \le x \le 8$

1- On désigne par \mathcal{A}_1 l'aire de la partie grise et par \mathcal{A}_2 l'aire de la partie blanche


Montrer que $\mathcal{A}_1 = -x^2 + 4x + 32$ et $\mathcal{A}_2 = x^2 - 4x + 32$.

2- Déterminer les valeurs de x pour lesquelles $\mathcal{A}_1 = \mathcal{A}_2$.

3~ on désigne par 𝒜₃ l'aire du triangle CFD

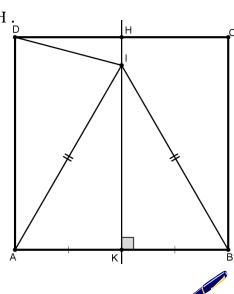
- a- donner l'expression de \mathcal{A}_3 en fonction de x
- **b** développer et réduire l'expression suivante : $(x+2)^2 36$

c- déterminer les valeurs de x pour lesquelles l'aire du carré AEFG soit égale a l'aire 3

EXERCICE 4:5 POINTS

ABCD est carré de coté 1. AIB est un triangle équilatéral.

La médiatrice de [AB] et [CD] passant par I coupe (AB) en K et (CD) en H.


- 1~ justifier que le triangle ADI est isocèle
- 2- a-calculer en justifiant les mesures des angles IAB ; IAD et ADI **b**-en déduire que HDI = 15°

3~ montrer que IH = $\frac{2-\sqrt{3}}{2}$

- 4~ démontrer que $\tan 15^{\circ} = 2 \sqrt{3}$
- 5~ a-vérifier que $(\sqrt{3}-1)^2 = 4-2\sqrt{3}$

b-en déduire que DI = $\frac{\sqrt{6} - \sqrt{2}}{2}$

c-montrer alors que $\cos 15^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}$ et $\sin 15^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}$

