Le barycentre G de (A,2), à l'extérieur de (B,-3) est situé: C entre A et B A et B A et B	
G est le barycentre de (A,1), (B,3); alors A est barycentre de: (G,-4),(B,3)	
Dans les questions qui suivent, 3 points A, B, C forment un triangle	
et G est le barycentre de (A,1), (B,2).	
L'ensemble des points M du plantels que $\overrightarrow{MA} + 2 \overrightarrow{MB} = 3 \overrightarrow{AC}$ est :	
O La parallèla è (AC) paggant par O la carala de centro C et de	
Le point C C La parallèle à (AC) passant par C le cercle de centre G et de rayon AC	
L'ensemble des points M du plantels que $ \overrightarrow{MA} + 2\overrightarrow{MB} = 3MC$ est :	
L'ensemble des points W au plantels que $ VLA + 2 VLB = 5 \text{ WC est}$:	
Le point C La médiatrice de [GC] le cercle de centre G et de rayon MC	
L'ensemble des points M du plantels que $ \overrightarrow{MA} + 2\overrightarrow{MB} = 3 AC$ est :	
Le point C La médiatrice de [GC] le cercle de centre G et de rayon AC	
2 est racine du trinôme: 9x² - 12x + 3 5x² - 13x + 6 x² -2x+2	
$4x^2$ - 8x + 3 se factorise sous:	
$(2x-3)(2x-1)$ (2x - 3)(2x - 1) $(x+\frac{3}{2})(2x+1)$	
x^2 - 1031x + 3084 = 0 a pour solution x= 3; l'autre solution est:	
O - 1028 O 1031	
2 réels ont pour somme 10 et pour produit -5. Ils sont solutions de l'équation:	
$x^2 - 10x + 5 = 0$ $x^2 + 10x + 5 = 0$ $x^2 - 10x - 5 = 0$	
La forme canonique de 2x² + 8x + 7 est:	
possède un possède un minimum pour possède un minimum pour	
maximum $x=-2$ $x=-1$	
$9x^2 - 24x + 16 \le 0 \text{ a pour solution} \qquad \qquad \mathcal{S} = \emptyset \qquad \qquad \mathcal{S} = \left\{\frac{4}{3}\right\} \qquad \qquad \mathcal{S} = R - \left\{\frac{4}{3}\right\} \qquad \qquad \Box$	
$x^4 - 3 x^2 - 4 = 0$ a pour solution:	
$S = \{2\}$ $S = \{2, -2, 1, -1\}$ $S = \{2, -2\}$	
2 Mr/youssefboulila/	

EXERCICE N I (7points)

A)Résoudre dans R les équations suivantes le plus astucieusement possible.

1)
$$4 x^4 = 3 x^2$$

2)
$$25\ 000\ x^2 + 20\ 000\ x = -4\ 000$$

3)
$$-11 x^2 - 3 x + 14 = 0$$

4)
$$\sqrt{2} x^2 + 4 x = 6 \sqrt{2}$$

B) A l'aide d'une équation du second degré, résoudre dans $\mathbb R$ les équations suivantes

a)
$$x^4 - 8x^2 - 9 = 0$$

b)
$$2x - 5\sqrt{x} - 12 = 0$$

C) Résoudre dans
$$\mathbb{R}$$
 , l'équation : $\sqrt{x+3} = 2x-4$

EX ERCICE N II (7points) On considère dans le plan un triangle ABC.

Partie A:

- 1. Placer les barycentres I de (B;1), (C;2), J de (A;2), (C;1) et K de (A;4), (B;-1).
- 2. Trouver l'ensemble des points M du plan tel que $\left\| 2\overrightarrow{MC} + \overrightarrow{MB} \right\| = BC$
- 3. a) Montrer que $\overrightarrow{KJ} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$.

b) Montrer que
$$\overrightarrow{KI} = \frac{2}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$$

c) Qu'en déduit-on pour les points *I*, *J* et *K*?

Partie B : Généralisation

- 1. Pour tout réel m, on appelle G_m le barycentre du système de points pondérés (A;2m),(B;1-m) et (C;2-m).
 - a) Justifier que G_m existe pour tout m réel.
 - b) Reconnaître les points G_0 , G_1 et G_2 .

2 Mr/youssefboulila/

a) Montrer que
$$\overrightarrow{AG}_m = \frac{1-m}{3}\overrightarrow{AB} + \frac{2-m}{3}\overrightarrow{AC}$$

$$\overrightarrow{JG}_m = \frac{1-m}{3} \left(\overrightarrow{AB} + \overrightarrow{AC} \right)$$

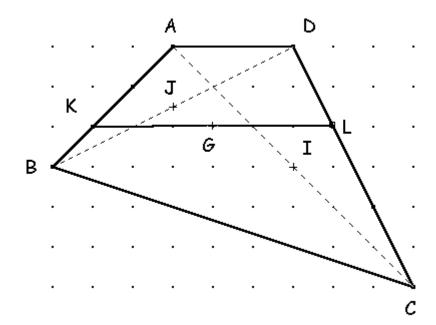
- b) En déduire que
 - 1. Placer les points G_4 , G_{-2} et G_7 .
 - 2. Quel est l'ensemble des points G_m quand m décrit \mathbb{R} ?

EXERCICE NIII (3points)

ABCD est un quadrilatère, I est le milieu du segment [AC], J est le milieu du segment [BD].

Les points K et L sont repérés sur la figure ci-contre, dont les graduations sont régulières respectivement sur les segments [AB] et [CD].

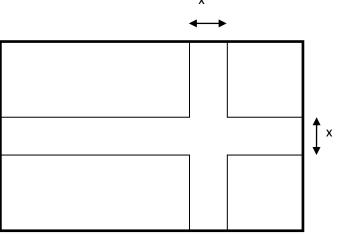
G désigne le milieu du segment [KL].



- 1. En utilisant les renseignements du dessin, exprimer G comme barycentre de A, B, C et D
- 2. Démontrer que G appartient à la droite (IJ). Préciser la position de G sur le segment [IJ].

EXERCICE N IV (3points)

Un terrain rectangulaire mesure 300 m sur 200 m. On désire y installer une allée en forme de croix de largeur constante x (voir dessin ci-contre).



Déterminer x afin que l'aire totale de l'allée soit égale à $\frac{1}{100}$ de l'aire du terrain initial.

Mr/youssefboulila/