Lycée secondaire de Cebbala Sidi Bouzid

Devoir De Contrôle N°3 En Sciences Physiques #Durée 2 h#

Prof : Barhoumi E. Classe : 4 sc. exp.

CHIMIE (9 points)

Exercice n°1:

1/ Indiquer la famille de chacun des composés X, Y, Z et W.

X	Y	Z	W
CH ₃ —C 0	CH ₃ —CH ₂ —C	СН ₃ —С СН ₃	O C NH ₂

2/ Donner le nom de chacun des composés suivant :

3/ Un amide N,N-disubstitué de masse molaire égale à 87 g.mol⁻¹.

Ecrire la formule semi-développée et le nom de cet amide.

Données en $\{g.mol^{-1}\}$: M(H)=1; M(C)=12; M(N)=14; M(O)=16.

Exercice n°2:

Les amides aliphatiques saturés obéissent à la formule générale $C_nH_{2n+1}ON$ où n représente le nombre d'atome de carbone.

- 1/ Trouver les formules semi-développées des isomères répondant à la formule brute des amides aliphatiques saturés pour **n=3**.
- 2/ On réalise deux expériences aboutissant chacune à la formation d'un amide de formule brute C_3H_7ON . On notera (A_1) et (A_2) les isomères des amides obtenus.

a- Première expérience :

L'amide (A₁) est obtenu par réaction entre un excès d'ammoniac NH₃ et un chlorure d'acyle noté (B).

- ✓ Ecrie, avec les formules semi-développées, l'équation de la réaction entre (B) et NH_{3. {1pt}}
- ✓ Déterminer la formule semi-développée de (**B**) et donner son nom.

b- Deuxième expérience :

L'amide (A_2) est obtenu par réaction entre un excès de méthanamine CH_3NH_2 et un anhydride d'acide noté (D).

- ✓ Ecrie, avec les formules semi-développées, l'équation de la réaction qui se produit entre (**D**) et CH₃NH₂.
- ✓ Déterminer la formule semi-développée de (\mathbf{D}) et donner son nom. Identifier (\mathbf{A}_2) .

PHYSIQUE: (11 points)

Exercice n°1:

La constante de Planck $h = 6.62.10^{-34} J.s$;

La célérité de la lumière dans le vide $c = 3,10^8 \text{m.s}^{-1}$;

$$1eV=1,6.10^{-19}J$$
;

$$1 \text{eV} = 1,6.10^{-19} \text{J}$$
;
Spectre de la lumière visible :
$$\frac{\text{UV} + \text{Lumière visible} + \text{IR}}{400} \times \frac{\lambda(\text{nm})}{800}$$

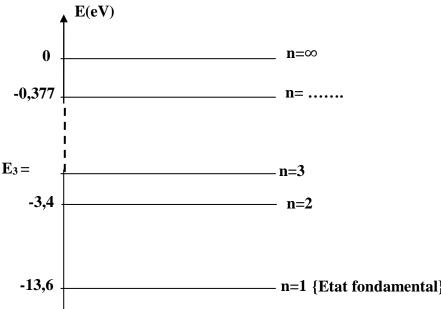
A) Niveaux d'énergie de l'atome d'hydrogène

1) Les niveaux d'énergies quantifiés de l'atome d'hydrogène sont donnés par la relation :

$$\mathbf{E_n} = -\frac{\mathbf{E_0}}{\mathbf{n^2}}$$
 où n est nombre entier naturel non nul.

a- Expliquer brièvement le terme "niveaux d'énergie quantifiés".

Que représente E₀ pour l'atome d'hydrogène ?


b- Compléter le diagramme des niveaux d'énergie en annexe.

2) Dans une expérience voisine de celle réalisée par Frank et Hertz, un faisceau d'électrons de même énergie cinétique E_C= 12,2 eV traverse un gaz formé par d'atomes d'hydrogène pris à l'état fondamental. Lors des collisions entre un électron incident et un atome d'hydrogène, un transfert d'énergie peut avoir lieu.

a-Justifier que l'atome d'hydrogène ne peut absorber que deux quantums d'énergie que l'on calculera.

b- Pour retrouver son état fondamental, l'atome d'hydrogène se désexcite en émettant l'énergie absorbée sous forme de radiations lumineuses.

Sur le digramme des niveaux d'énergie (ci-dessous), représenter par des flèches les transitions possibles et calculer les longueurs d'onde des radiations correspondantes.

B) Les raies de la série de Balmer

Les radiations émises lorsqu'un atome d'hydrogène passe d'un état excité tel que n > 2 à l'état n=2, constituent la série de Balmer.

1) Montrer que les longueurs d'onde de ces radiations vérifient la relation : $\lambda = 4 \frac{hc}{F_0} \left(\frac{n^2}{n^2 - 4} \right)$

2) Déterminer le nombre et les longueurs d'onde de toutes les radiations de cette série de Balmer qui appartiennent au domaine de visible.

Exercice n°2:

Un faisceau laser de longueur d'onde λ dans le vide traverse successivement diverses fentes. La figure de diffraction est observée sur un écran situé à la distance **D=2,50m** de la fente. On a mesuré à chaque fois la largeur **L** de la tache centrale de diffraction en fonction de la largeur **a** de la fente.

Les résultats sont dressés dans le tableau suivant :

L (mm)	6,6	8,8	13	27	53
a (mm)	0,40	0,30	0,20	0,10	0,05

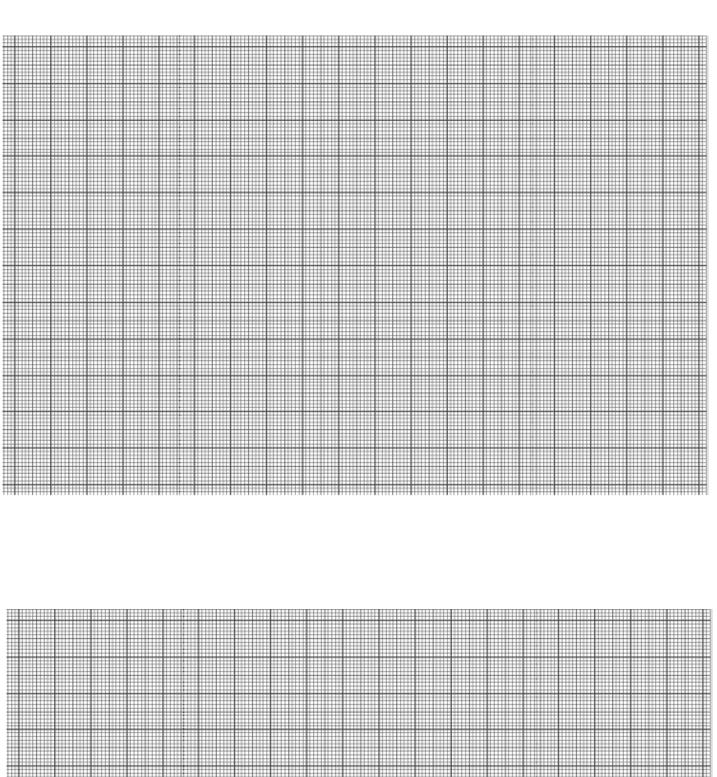
1/ Faire le schéma de l'expérience, indiquer les distances \mathbf{D} , \mathbf{a} , \mathbf{L} et l'écart angulaire $\mathbf{\theta}$.

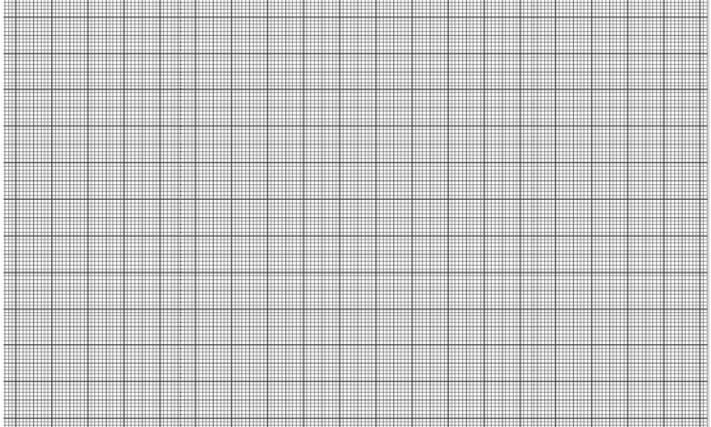
2/ Décrire la figure de diffraction observée sur l'écran.

Quel est le caractère mis en évidence par cette expérience ?

- 3/a- Donner la relation entre λ , θ et a.
 - b- Ecrire la relation entre $\mathbf{tg}(\theta)$, L et D.
 - c- En déduire l'expression de L en fonction de λ , a et D.

4/ a- Reproduire et compléter le tableau suivant en calculant à chaque fois les valeurs de $\mathbf{x} = \frac{1}{a}$.


L (mm)	6,6	8,8	13	27	53
$\mathbf{x} = \frac{1}{\mathbf{a}} \; (\mathbf{m}\mathbf{m}^{-1})$					


- b- Tracer la courbe de L=f(x).
- c- Par exploitation de la courbe de L=f(x), déterminer la longueur λ d'onde de cette lumière.
- 5/ Le faisceau laser précédent traverse une cuve remplie d'eau.
- a- Calculer la fréquence du faisceau laser.
- b- Quelle est la valeur de la longueur d'onde λ' de la lumière précédente dans l'eau ?

Données : célérité de la lumière dans le vide $c = 3.10^8 \text{ m.s}^{-1}$.

indice de réfraction de l'eau n=1,33.

