EXERCICE **1**

2.5 pts

Répondre par vrai ou faux en justifiant la réponse:

- 1. La partie réelle de $\frac{3+5i}{2+i}$ est $\frac{3}{2}$.
- 2. Le conjuguée de (1+ia) est (1-ia) ou $a \in \mathbb{C}$
- 3. $\left(\frac{5-i}{1+2i}\right)^7 + \left(\frac{5+i}{1-2i}\right)^7$ est un nombre réelle.
- 4. Toute suite majorée est convergente.

5.
$$\lim_{n \to +\infty} \left(3 - \left(\frac{\sqrt{2}}{2} \right)^n \right) = 0$$

EXERCICE 2

4.5 pts

- 1. (a) Ecrire sous la forme algébrique le nombre complexe $U = (1 i)^2$.
 - (b) Résoudre dns \mathbb{C} l'équation $(E): z^2 3(1+i)z + 5i = 0$
- 2. Le plan complexe est rapporté à un repère orthonormé directe $(O, \overrightarrow{u}, \overrightarrow{v})$, on considère les points A, B et C d'affixes respectives a = 1 + i, b = 2 + i et c = 1 + 2i.
 - (a) Placer les points A, B et C sur une figure.
 - (b) Montrer que le triangle ABC est isocèle en A.
 - (c) Déterminer l'affixe z_D du points D pour que ACDB est un carré.
- 3. Soit Δ l'ensemble des points M d'affixe z vérifiant $\left| \frac{z (2+i)}{z (1+2i)} \right| = 1$

Déterminer et construire Δ .

EXERCICE 3

6 pts

On considère la suite U définie par: $\begin{cases} U_0 &= 0 \\ U_{n+1} &= \frac{6-U_n}{4-U_n} \end{cases} \text{ pour tout } n \in \mathbb{N}$

- 1. (a) Montrer par récurrence que pour tout $n \in \mathbb{N}$; on a $U_n < 2$
 - (b) Montrer que pour tout $n \in \mathbb{N}$ $U_{n+1} U_n = \frac{(U_n 2)(U_n 3)}{4 U_n}$.
 - (c) Montrer que la suite U est croissante.

- (d) Déduire que U est convergente.
- 2. Soit la suite V définie sur \mathbb{N} par: $V_n = \frac{2U_n 6}{U_n 2}$
 - (a) Montrer que V est une suite géométrique e raison 2.
 - (b) Exprimer V_n en fonction de n.
 - (c) Déduire que, pour tout $n \in \mathbb{N}$, $U_n = \frac{6\left(1 \left(\frac{1}{2}\right)^n\right)}{3 2\left(\frac{1}{2}\right)^n}$.
 - (d) Calculer alors $\lim U_n$.

Soit
$$f(x) = \frac{x - \sin x}{1 + x^2}$$
.

- 1. Déterminer D_f (le domaine de définition de f).
- 2. (a) Montrer que pour tout $x \in \mathbb{R}$; $\frac{x-1}{1+x^2} \le f(x) \le \frac{1+x}{1+x^2}$.
 - (b) En déduire $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$.
 - (c) Interpréter graphiquement le résultat.

EXERCICE 6

Soit
$$f(x) = \begin{cases} \frac{2x+1}{x-1} & \text{si } x \ge 0\\ x+1+\frac{2}{x+3} & \text{si } x < 0 \end{cases}$$

- 1. Calculer $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to 0^-} f(x)$. conclure.
- 2. $\lim_{x \to -\infty} f(x)$ et interpréter le résultat.
- 3. Montrer que (x = 1) est asymptote verticale.
- 4. calculer $\lim_{x\to +\infty} f(x)$ et montrer que C_f admet une asymptote oblique dont on donnera une équation.