Exercice n° 1:

Choisir la bonne réponse : z étant un nombre complexe.

1. La partie imaginaire de i est :

(a) 1

(b) *i*

0 . (c)

2. $z + \overline{z}$ est:

(a) réel

- **(b)** imaginaire pur
- (c) nul.

3. $z-\overline{z}$ est:

(a) réel

- **(b)** imaginaire pur
- (c) nul.

4. $z \times \overline{z}$ est:

- (a) imaginaire pur
- (b) réel négatif
- (c) réel positif.

5. L'ensemble des solutions dans \mathbb{C} de l'équation $z^2 = iz$ est :

- {0} (a)
- (b) $\{i\}$
- (c) $\{0;i\}$.

Exercice n° 2:

On considère les deux suites récurrentes (v_n) et (w_n) telles que :

$$v_0 = 1, w_0 = \sqrt{2} \text{ et pour tout } n \in \mathbb{N}, \begin{cases} v_{n+1} = \frac{v_n + w_n}{2} \\ w_{n+1} = \frac{v_n + \sqrt{2}w_n}{1 + \sqrt{2}} \end{cases}.$$

Pour tout $n \in \mathbb{N}$, on pose $z_n = w_n - v_n$.

- **a.** Démontrer que (z_n) est une suite géométrique de raison $\frac{3}{2} \sqrt{2}$.
- **b.** Justifier que pour tout $n \in \mathbb{N}$, $v_n \le w_n$.
- **c.** Etablir que la suite (v_n) est croissante et que la suite (w_n) est décroissante.
- **d.** En déduire que les deux suites (v_n) et (w_n) convergent et ont la même limite.

Exercice 3: (Voir Annexe)

Pour crypter (rendre secret) un message, on procède de la manière suivante :

A chacune des 26 lettres de l'alphabet, on associe un entier $n \in \{0;1;...;25\}$ dans le même ordre que celle -ci.

Le reste r de la division de l'entier (m=5n+2) par 26 associe la lettre correspondante.

Exemple: pour crypter la lettre E, on procède comme suit:

1ère étape: on associe à E l'entier 4.

2^{ème} étape: le reste de la division de $(5\times4+2)=22$ par 26 est 22.

3ème étape : on associe 22 à W.

Ainsi, E est crypté en W.

- 1. Crypter le mot « ENNEMI »
- 2. On se propose de décrypter le mot « CKQ ».
- **2. a** Résoudre dans \mathbb{Z}^2 chacune des équations suivantes:
 - (i) 5x 26y = 0.
 - (ii) 5x-26y=8. (remarquer que (12,2) est une solution).

(iii)
$$5x-26y=14$$
. (poser $z=2y+1$, résoudre $5x-13z=1$ puis $5t-2y=1$).

2. b Prouver que chacune de ces équations admet une solution unique (x, y)

vérifiant $0 \le x \le 25$.

2. c Décrypter le mot « CKQ ».

Exercice n° 4:

- **1.** Résoudre dans \mathbb{C} l'équation : $z^2 (3+4i)z + 7i 1 = 0$ (\mathcal{E}_1)
- **2.** On considère dans \mathbb{C} , l'équation : $z^3 (3+5i)z^2 + (-5+10i)z + 7 + i = 0$ (\mathcal{E})
- **2. a** Vérifier que i est une solution de l'équation (\mathcal{E}) .
- **2. b** Résoudre dans \mathbb{C} l'équation (\mathcal{E}).