Lycée privé NIZAR	DEVOIR DE SYNTHESE N°2	
PROF : SFAXI SALAH	CLASSES : 4eme SC-exp	
Date: mars 2011	DUREE / 3heure	

Partie chimie (7 pts)

Toutes les solutions sont prises à 25° C. On donne Ke = 10^{-14}

Exercice n°1(3,5pts)

On prépare une solution aqueuse (S) d'un acide **AH** de concentration molaire **C=0,1mol.L**-1.

La mesure du **pH** de cette solution donne **2,15**.

- 1) a- Compléter le tableau d'avancement <u>de la feuille annexe</u>. On négligera les ions provenant de l'ionisation de l'eau par rapport aux ions provenant de la dissociation de l'acide au cours de sa mise en solution.
 - b- Déterminer le taux d'avancement final τ_f de la réaction entre l'eau et l'acide AH et caractériser la force de l'acide .
 - c- Ecrire l'équation de la réaction de cet acide avec l'eau.
- 2) a- Montrer que la constante d'acidité du couple **AH/A** peut se mettre sous la forme :

$$Ka = \frac{\left\lfloor H_3 O^+ \right\rfloor . \tau_f}{1 - \tau_f}$$

- b- Quelle approximation doit-on faire pour obtenir la relation : $Ka = \lfloor H_3O^+ \rfloor . au_f$
- c-Déduire l'expression du **pH** de la solution (S) et calculer le **pKa** du couple **AH/A**.
- d-Identifier l'acide AH. On donne:

Couple AH/A ⁻	<i>NH</i> ₄ +/ <i>NH</i> ₃	HNO_2/NO_2^-	<i>НСООН/НСОО</i> -
Ка	<i>5,6.10</i> ⁻¹⁰	5.10 ⁻⁴	1,8.10-4

3) On prépare une solution (S') de volume V=100ml et de pH'=2,8 par dilution d'un volume V_0 de la solution (S). déterminer le volume V_0 à prélever de (S).

Exercice n°2(3,5pts)

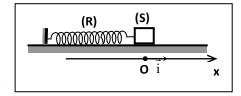
Les mesures sont faites à 25°C.

On dispose de deux solutions de monobases de concentrations molaires inconnues :

La solution (S_1) , de concentration molaire C_1 , a un $pH_1 = 11$.

La solution (S_2) , de concentration molaire C_2 , a un $pH_2 = 10,7$.

1


Afin d'identifier ces deux solutions, on les dilue 10 fois. La solution (S_1') a un $pH_1'=10$ et la solution (S_2') a un $pH_2'=10,2$.

- **1°)** a) Montrer que le **pH** d'une solution de monobase forte de concentration initiale C est donnée par la relation **pH** = **14** + $\log C$ si la solution n'est pas très diluée.
- **b)** En déduire la variation de **pH** qui accompagne la dilution **10 fois** d'une solution de monobase forte .
 - c) Quelle conclusion peut-on tirer en ce qui concerne les solutions (S_1) et (S_2) ?
- **2°)** La solution (S_2) est une solution d'ammoniac dont le **pKa** du couple (NH_4^+/NH_3) est **9,2**.
 - a) Ecrire l'équation de dissolution de l'ammoniac dans l'eau.
- **b)** Calculer les concentrations des espèces chimiques présentes dans la solution (S_2) autres que l'eau.
- c) Exprimer la concentration C_2 de la solution (S_2) en fonction de pH_2 et pKa. Calculer la valeur de C_2 puis celle de C_2 .
- d) Calculer les taux d'avancement finaux \mathcal{T}_f et \mathcal{T}_f de l'ammoniac dans la solution (S_2) et (S_2') . Quel est l'effet d'une dilution modérée sur l'ionisation d'une base faible ?

Partie physique (13pts)

Exercice N°1(8pts)

Un oscillateur mécanique horizontal (figure ci-contre) est constitué par un ressort élastique à spires non jointives

de masse négligeable et de raideur $\mathbf{k} = 40 \text{N.m}^{-1}$ à l'extrémité duquel est accroché un solide **(S)** de masse \mathbf{m} . Cet oscillateur est soumis d'une part à une force de frottement $\mathbf{f} = -\mathbf{h} \cdot \mathbf{V}$ où \mathbf{V} est la vitesse du centre d'inertie \mathbf{G} du solide et \mathbf{h} un coefficient positif ; d'autre part à une force excitatrice $\mathbf{F}(\mathbf{t}) = \mathbf{F}_{\mathbf{m}} \cdot \mathbf{sin}(\boldsymbol{\omega t}) \cdot \mathbf{i}$ exercée par un excitateur approprié .

L'équation différentielle régissant les oscillations de l'élongation X(t) du centre d'inertie G du solide (S) est : $m \cdot \frac{d^2x(t)}{dt^2} + h \cdot \frac{dx(t)}{dt} + kx(t) = F(t)$

la solution générale de cette équation différentielle est : $X(t) = X_m$ sin $(\omega t + \varphi_x)$.

- 1) La valeur maximale X_m de l'élongation X(t) est donnée par : $\frac{F_m}{\sqrt{(h\omega)^2 + (m\omega^2 k)^2}}$
 - Montrer que X_m est maximale pour une valeur ω_r que l'on déterminera .
- 2) On mesure l'amplitude X_m pour différentes valeurs de la pulsation ω de la force excitatrice.
 - A partir de ces mesures on trace la courbe $X_m = f(\omega)$ et on déduit la courbe qui traduit les variations de $V_m = f(\omega)$ où V_m est la valeur maximale de la vitesse instantanée V(t) du centre d'inertie G du solide G .On obtient les courbes G et G de la feuille annexe.
 - a) En justifiant la réponse , montrer que la courbe (a) correspond à l'évolution de X_m en fonction de la pulsation ω .
 - b) Expliquer comment peut-on déduire la courbe (b) à partir de la courbe (a).
- 3) Déterminer graphiquement :
 - a) La pulsation propre ω_0 .
 - b) La pulsation ω_r .
 - c) L'amplitude X_{m0} à la résonnance d'amplitude.
 - d) La vitesse V_{m0} à la résonnance de vitesse .
- 4) a) Montrer que la valeur maximale de la force excitatrice est $F_m = 4N$.
 - b) Déterminer la valeur du coefficient de frottement visqueux \mathbf{h} .
 - c) Déterminer la masse m du solide.
- 5) a) Calculer, à la résonnance de vitesse, le coefficient : $Q = \frac{k.X_m}{F_m}$.
 - b) Donner par analogie électrique mécanique, la signification physique de ce coefficient et nommer le.
- 6) a) Soient E l'énergie totale de l'oscillateur et V la vitesse instantanée du centre d'inertie G du solide (S), montrer que : $\frac{dE}{dt} = A B$ avec A = F.V et $B = h.V^2$
 - b) Quelles sont les significations physique de A et B et $\frac{dE}{dt}$.
 - c) Déduire qu'à la résonnance de vitesse , l'énergie E est constante et donner sa valeur .

Exercice N°2(5pts)

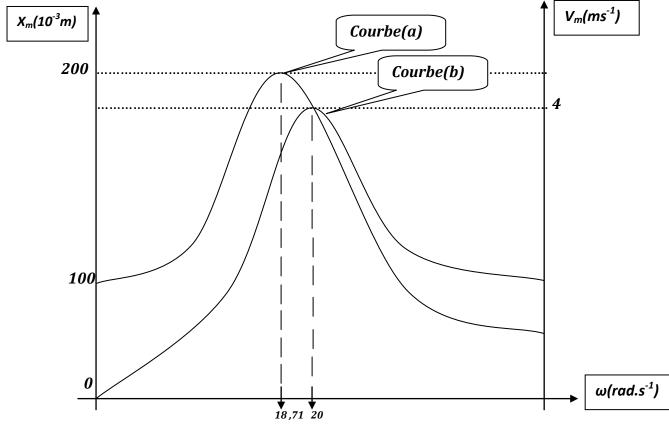
A l'extrémité d'une lame vibrante verticalement, est fixé un fil de longueur ${\it l}={\it 2}$ ${\it m}$, de masse

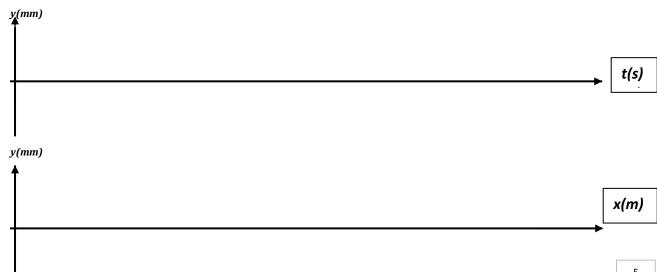
m=20g soumis à une tension d'intensité $\|\vec{F}\|=4N$.On admettra qu'il n'y a pas de réflexion aux extrémités du fil. La fréquence du mouvement de la lame est N=100 Hz.

- 1°) Quelle est la longueur d'onde λ de la vibration ?
- 2°) L'extrémité \boldsymbol{S} de la lame a un mouvement sinusoïdal d'amplitude $\boldsymbol{a}=\boldsymbol{2}$ \boldsymbol{mm} .

3

Ecrire l'équation horaire du mouvement de S, ainsi que celle du mouvement d'un point M du fil situé à la distance SM = x 65 cm.


On suppose qu'à la date ${\bf t}={\bf 0}{\bf s}$, la source S débute son mouvement en allant dans le sens positif.


- 3°) Représenter sur un même système d'axe, les diagrammes de ${\bf S}$ et de ${\bf M}$.
- 4°) Représenter l'aspect du fil à l'instant $t_1 = 4,75$. $10^{-2} s$?

Bon travail

Feuille annexe à rendre avec la copie

Equation de la réaction		→
Etat du système	Avancement volumique	molarités (en mol.L ⁻¹)
Etat initial		
Etat final		

