<u>Lycée Hédi CHAKER</u> SFAX

Devoir de contrôle N°2 Mars 2011

2010/2011

Section: Sciences Expérimentales Coefficient: 4 Durée: 2 heures

EPREUVE: SCIENCES PHYSIQUES

Proposé par : Abdmouleh Nabil

L'épreuve comporte deux exercices de chimie et deux exercices de physique répartis sur cinq pages numérotées de 1/5 à 5/5. La page 5/5 à rendre avec la copie.

Chimie: - Réaction acide base

Physique: - Oscillations électriques forcées.

- Loi de modération

- Oscillations libres non amorties.

Chimie (7,0 points)

Exercice N°1 (4,75 points)

On considère les couples acide/base suivants :

$$\text{CH}_{3}\text{CO}_{2}\text{H}/\text{CH}_{3}\text{CO}_{2}^{-} \text{ (K}_{a1} = 1, 8.\,10^{-5}) \text{ et } \text{HCO}_{2}\text{H}/\text{HCO}_{2}^{-} \text{ (K}_{a2} = 1, 8.\,10^{-4})$$

1°/ Comparer la force des acides CH_3CO_2H et HCO_2H et la force des bases $CH_3CO_2^-$ et HCO_2^- .

2°/

- a°/ Ecrire l'équation chimique de la réaction limitée de l'acide CH_3CO_2H avec l'eau.
- b°/ En précisant la loi utilisée, donner l'expression de la constante d'acidité K_{a1} .

3°/

- a°/ Ecrire l'équation chimique de la réaction limitée entre HCO_2H et $CH_3CO_2^-$.
- b°/ Exprimer sa constante d'équilibre K en fonction de K_{a1} et K_{a2} . Calculer sa valeur.
- 4°/ A la température $\theta=25^{\circ}\text{C}$, on réalise un système chimique formé par 2,1 mol de HCO_2^- ; 1,2 mol de $CH_3CO_2^-$; 2,4 mol de HCO_2^- H et 0,6 mol de $CH_3CO_2^-$.
 - a°/ Montrer que le système ainsi formé n'est pas en équilibre. En déduire le sens d'évolution spontané.
 - b°/ Déterminer la composition finale du mélange.

Exercice N°2 (2,25 points)

On considère la réaction symbolisée par l'équation :

$$CH_{4\,(g)} \ + 2\ H_2S_{(g)} \quad \ \rightleftharpoons \quad \ CS_{2\,(g)} \ + \ 4\ H_{2\,(g)}$$

1°/ Sous une pression de 1 atm, on détermine le taux d'avancement final de réaction pour deux températures différentes. Les résultats trouvés sont consignés dans le tableau suivant :

Page 1 sur 6

Température en °C	32	54
Taux d'avancement final	0,24	0,46

En exploitant les résultats du tableau ci-dessus; indiquer le caractère énergétique de la réaction qui correspond à la formation H_2S .

- 2° / Comment varie la quantité du méthane CH_4 présent à l'équilibre chimique si :
 - on augmente à température constante la pression du système.
 - on aspire à température et volume constants une quantité de dihydrogène.

Physique (13,0 points)

Exercice N°1 (7,00 points)

branche électrique AM, constituée par un conducteur Une ohmique de résistance $R_0 = 80 \,\Omega$, un condensateur de capacité C et une bobine d'inductance Let de résistance interne r, est alimentée comme le montre la *figure-1-* par un dipôle générateur délivrant basse fréquence tension sinusoïdale une $\mathbf{u}(\mathbf{t}) = \mathbf{U}_{\max} \sin(2 \, \Pi \, \mathbf{N} \, \mathbf{t}),$ de fréquence N réglable et d'amplitude U_{max} maintenue constante.

On relie les points M, B et A respectivement à la masse, à la voie-1- et à la voie-2- d'un oscilloscope et on règle la fréquence N du générateur à la valeur N_1 . En régime permanent, l'intensité du courant circulant dans le circuit s'écrit

$$i(t) = I_{max} sin 2 \Pi N_1 t + \phi_i$$

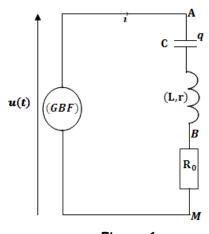
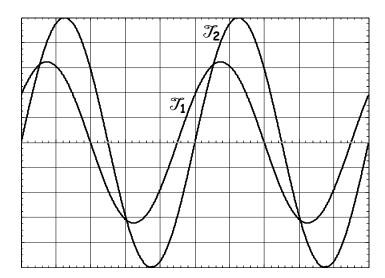



Figure-1-

Sur l'écran de l'oscilloscope, on observe les tensions \mathcal{T}_1 et \mathcal{T}_2 qu'on représente sur la <u>figure-2-</u>

<u>Sensibilité horizontale</u> : 1 ms /carreau <u>Sensibilités verticales</u> : 2 Volt /carreau

Figure-2-

Page 2 sur 6

- a°/ Montrer que \mathcal{T}_1 représente la tension u_{BM} . En déduire la nature inductif ou capacitif du circuit RLC série étudié.
- b°/ Déterminer N_1, U_{max}, ϕ_i et I_{max} . En déduire la valeur de l'impédance Z_1 de la branche électrique AM.
- c°/ Montrer que r = 19,5 Ω .
- 2°/ Calculer la puissance électrique moyenne reçue par le circuit RLC série.
- 3°/ L'équation différentielle régissant les oscillations du courant i s'écrit

$$L\frac{di_1(t)}{dt} + (R_0 + r)i(t) + \frac{1}{C} \int i(t)dt = u(t)$$

- a°/ Compléter le tableau du <u>document-1-</u> <u>de la page 5/5</u>.
- b°/ Sur le <u>document-2- de la page 5/5</u>, on donne à l'échelle la représentation graphique du vecteur de Fresnel \overrightarrow{OA} correspondant au terme $\frac{1}{C}\int \mathbf{i}(\mathbf{t})\mathbf{dt}$. Compléter le document-2- en représentant les vecteurs de Fresnel des autres termes de l'équation différentielle ci-dessus.
- c°/ En se servant de la construction de Fresnel, déterminer la valeur de la capacité C et celle de l'inductance L. En déduire la valeur de la fréquence propre N_0 .
- 4° / On fait varier la fréquence N du GBF et pour une fréquence N_2 , l'impédance Z de la branche électrique AM passe par un minimum.
 - a°/ Montrer que la fréquence N_2 correspond à un état de résonance d'intensité de la branche électrique AM.
 - b° / En déduire la valeur de Z et celle de N_2 .

Exercice N°2 (6,00 points)

A l'aide d'un solide (S) supposé ponctuel de masse m et d'un ressort (R) à spires non jointives de masse négligeable et de raideur K, on construit le pendule élastique de la <u>figure-3-</u>

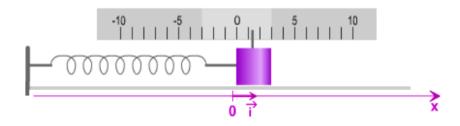
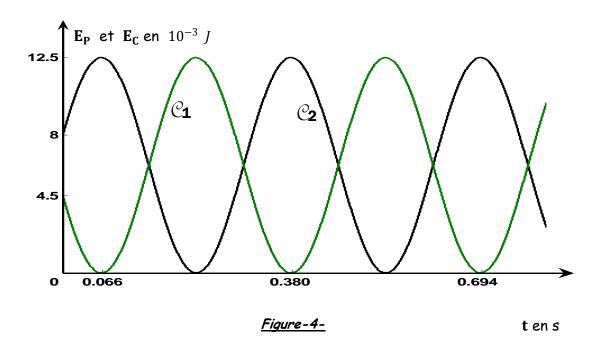


Figure - 3 -

Au cours de son mouvement, le solide (S) est assujetti à se déplacer sans frottement sur un rail horizontal représentant l'axe $(x^{'}x)$ muni du repère $R(0,\vec{\imath})$. Au repos, la position du centre


d'inertie (G) du solide (S) correspond à l'origine 0 et à chaque instant, son élongation est donnée par $x(t) = \overline{\mathbf{0G}}$.

De sa position de repos, on écarte le solide (S) d'une distance $X_0=3~cm$ et à l'origine des temps (t=0) on lui communique un vecteur, vitesse $\overrightarrow{V_0}=V_0\vec{i}$ de valeur algébrique $V_0<0$. Son centre d'inertie (G) effectue un mouvement rectiligne sinusoïdal de loi horaire

$$x(t) = X_{max} \, sin(\omega_0 \, t + \, \phi_x)$$

1°/

- a°/ Etablir l'équation différentielle qui régit les variations au cours du temps de l'élongation \mathbf{x} .
- b°/ Montrer que la pulsation propre du mouvement de (G) peut être donnée par $\omega_0 = \sqrt{\frac{K}{m}}. \ \ \text{En déduire en fonction de } K \ \text{et } m \ \text{l'expression de la fréquence propre } N_0 \ \ \text{des oscillations}.$
- 2°/ A l'aide d'un système d'acquisition approprié, on enregistre les variations au cours du temps des énergies potentielle élastique E_P et cinétique E_C . On obtient les oscillogrammes C_1 et C_2 de la <u>figure-4-</u>

- a°/ Montrer que l'oscillogramme C_1 correspond à E_P .
- b°/ En exploitant les oscillogrammes de la <u>figure-4-</u> ; déterminer K , X_{max} et N_0 .
- c°/ En déduire la valeur de la masse m et celle de V_0 .
- 3°/ En se servant des oscillogrammes de la <u>figure-4-</u> montrer que l'énergie mécanique E de ce pendule est conservée. En déduire sa valeur.

Page 4 sur 6

4°/	Déterminer la phase initiale ϕ_x et donner en fonction du temps l'expression de la vitesse v
	de (G).

Lycée Hédi Chaker

Sfax

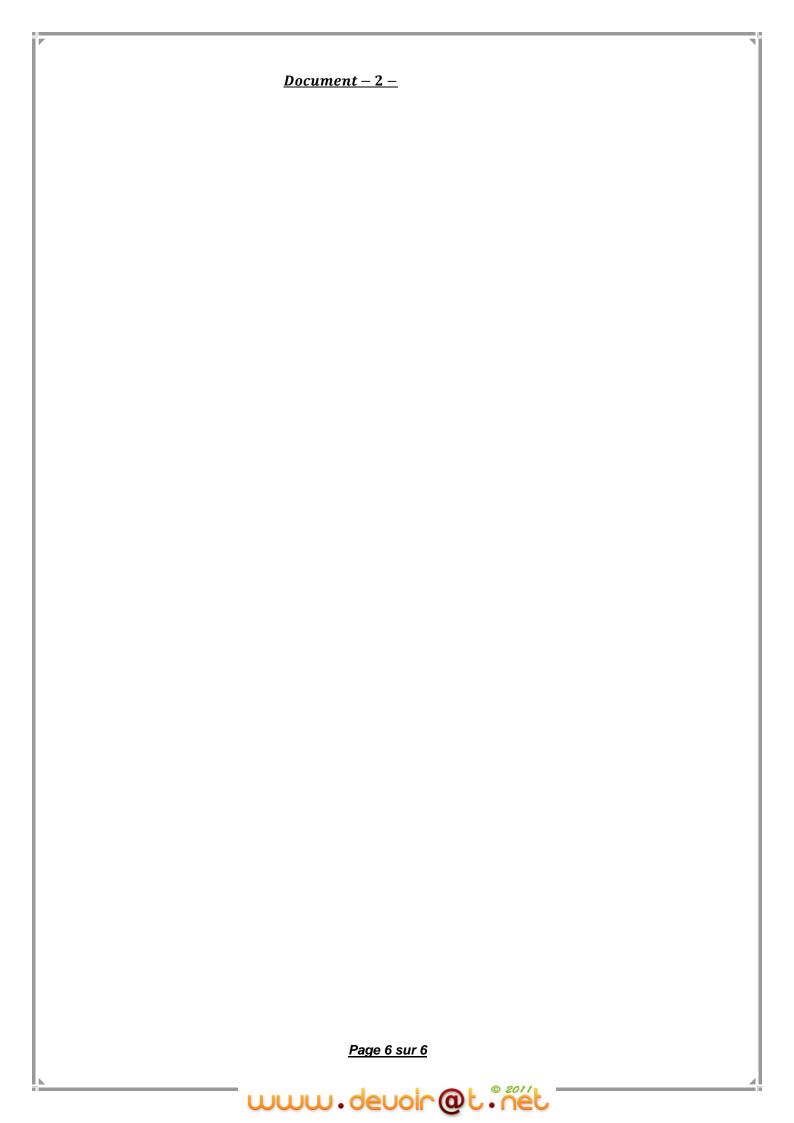
Bac: Sc.exp

SCIENCES PHYSIQUES Devoir de Contrôle N°2

Durée: 2 Heures

Page 5/5 à rendre avec la copie

Nom......Classe......


Tension	Amplitude	Phase initiale
$L\frac{di(t)}{dt}$		
$\frac{1}{C}\int i(t)dt$		

Document - 1 -

 $Ecelle: 1 cm \rightarrow 2 V$

 \overline{O}

Page 5 sur 6

