Prof : Marwen Ibn Abdelkhalek	Devoir de contrôle n°2	152
L.S. Kondar	Mathématiques	22/11/2019

Exercice n°1: (5 points)

Choisir les réponses exactes :

1) soient X et Y deux réels nuls tel que X.Y = $\frac{-7}{\sqrt{\varsigma}}$ alors l'inverse de X égale :

a)
$$-\frac{7}{y\sqrt{5}}$$

b)
$$-\frac{\sqrt{5}}{7}$$

b)
$$-\frac{\sqrt{5}}{7}$$
 c) $-\frac{\sqrt{5}}{7}$ Y d) $\frac{\sqrt{5}}{7}$ Y

$$d)\frac{\sqrt{5}}{7}Y$$

2) Un nombre égale au trible de son inverse égale :

a)
$$\frac{\sqrt{3}}{3}$$

$$b)\sqrt{3}$$

$$c)\frac{-\sqrt{3}}{3} \qquad \qquad d) - \sqrt{3}$$

$$d)-\sqrt{3}$$

3) Soient a et b deux réels non nuls tels que $a^{10}(b^{-3})^{-5} < 0$ alors :

a)
$$a > 0$$
 et $b > 0$

b)
$$a > 0$$
 et $b < 0$

$$(b) a > 0 \text{ et } b < 0$$
 $(c) a < 0 \text{ et } b < 0$ $(d) a < 0 \text{ et } b > 0$

$$d)a < 0 \text{ et } b > 0$$

4)
$$\sqrt{0,00007} \times \sqrt{70000000} =$$

5) Deux droites (MN) et (BC) sont sécante en A avec $AM=\sqrt{5}$, $AB=3-\sqrt{2}$, AN=3 et

 $(MB) \parallel (CN)$ alors:

$$a) AC = \frac{9 - 3\sqrt{2}}{\sqrt{5}}$$

$$b)\frac{1}{\sqrt{5}}$$

b)
$$\frac{1}{\sqrt{5}}$$
 c) $\frac{\sqrt{5}}{9-3\sqrt{2}}$ d) $\frac{1}{3}$

$$d)\frac{1}{3}$$

Exercice n° 2: (2 points)

Soit huit réels strictements positifs a, b, c, d, x, y, z et t, tels que $\frac{a}{x} = \frac{b}{y} = \frac{c}{z} = \frac{d}{t}$.

Montrer que $\sqrt{ax} + \sqrt{by} + \sqrt{cz} + \sqrt{dt} = \sqrt{(a+b+c+d)(x+y+z+t)}$.

Exercice 3:(6points)

Soit
$$a = -\sqrt{16} + \sqrt{\frac{3+\sqrt{4-\sqrt{12}}}{2-\sqrt{3}}}$$
 ; $b = 1 - \sqrt{\frac{12-\sqrt{108}}{4-\sqrt{12}}}$ $c = \frac{-1+\sqrt{3}-\sqrt{12-\sqrt{108}}}{\sqrt{12}-4}$

 $et E = ax^2 + bx + c$, $x \in \mathbb{R}$,

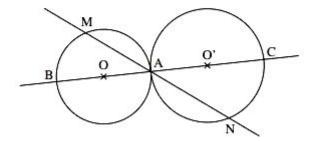
1) Montrer que
$$a = -2 + \sqrt{3}$$
, $b = 1 - \sqrt{3}$, $c = 1$

2) on pose
$$\Delta = b^2 - 4ac$$
 , montrer que $\Delta = (3 - \sqrt{3})^2$.

3) a) Calculer
$$x' = \frac{-b - \sqrt{\Delta}}{2a}$$
, $x'' = \frac{-b + \sqrt{\Delta}}{2a}$.

b) Montrer que
$$x' + x = \frac{-b}{a}$$
, $x' \cdot x = \frac{c}{a}$.

c) En déduire
$$\frac{1}{x'+1} + \frac{1}{x''+1} = \frac{2a-b}{a-b+c}$$
.


4) Montrer que
$$E = a(x - x')(x - x'')$$
.

Exercice n°4: (7points)

Dans la figure suivante, on donne BC = 11 cm et BA = 5 cm. Les deux cercles ont pour diamètres [BA] et [AC] et pour centres O et O'.

On donne AM = 4 cm et les points M, A, N sont alignés.

1. Construire cette figure et tracer les droites (MB) et (NC).

- 2. a. Que constate-t-on pour les droites (MB) et (NC)?
- b. Prouver que ce résultat est vrai.
- 3. Calculer AN.
- Prouver que les droites (MO) et (NO') sont parallèles.