Epreuve

Mathématiques

Durée: 2H

Devoir de contrôle n°3

Classe: 3^{ème} T

Professeur

Dhaouadi

Nejib

Exercice 1

Soit f la fonction définie sur $\mathbb{R}\setminus\{2\}$ par : $f(x)=rac{x^2-3x+3}{x-2}$.

On désigne par $\mathscr C$ la courbe représentative de f dans un repère orthogonal $\left(O,\vec{i},\vec{j}\right)$.

- 1) a) Montrer que f est dérivable sur $\mathbb{R}\setminus\left\{2\right\}$ et $\forall x\in\mathbb{R}\setminus\left\{2\right\}$, $f'(x)=\dfrac{x^2-4x+3}{\left(x-2\right)^2}.$
- b) Dresser le tableau de variation de f.
- 2) a) Vérifier que $\forall x \in \mathbb{R} \setminus \{2\}$, $f(x) = x 1 + \frac{1}{x 2}$.
- b) En déduire que la courbe $\mathscr C$ admet une asymptote oblique D que l'on précisera.
- 3) Tracer D et \mathscr{C} .

Exercice 2

 $Soit \; (u_n) \; la \; suite \; r\'eelle \; d\'efinie \; par : \; \; u_0 = 1 \; \; et \; \; orall n \in \mathbb{N}, \; \; u_{n+1} = 1 + rac{2}{u_n} \, .$

- 1) Vérifier que la suite (u_n) n'est ni arithmétique ni géométrique.
- 2) Montrer, à l'aide d'un raisonnement par récurrence, que pour tout entier naturel n $1 \leq u_{_n} \leq 3 \, .$
- 3) Pour tout entier naturel n, on pose $v_n = \frac{u_n 2}{u_n + 1}$.
- a) Montrer que la suite (v_n) est une suite géométrique dont on précisera la raison.
- b) Exprimer v_n et puis u_n en fonction de n.

Exercice 3

Considérons les nombres complexes : u=1+i , $v=\sqrt{3}+i$ et $w=u^3v$.

- 1) a) Mettre u^3 sous forme algébrique.
 - b) Mettre w sous forme algébrique.
- 2) a) Donner le module et un argument de u et puis de u^3 .
 - b) Déterminer le module et un argument de v.
 - c) Déduire des questions précédentes la forme algébrique de w.
- 3) En comparant les écritures trigonométrique et algébrique de w, déterminer les valeurs exactes de $\cos\left(\frac{11\pi}{12}\right)$ et $\sin\left(\frac{11\pi}{12}\right)$.