RÉPUBLIQUE TUNISIENNE MINISTERE DE L'ÉDUCATION ******

EXAMEN DU BACCALAURÉAT

SESSION 2016

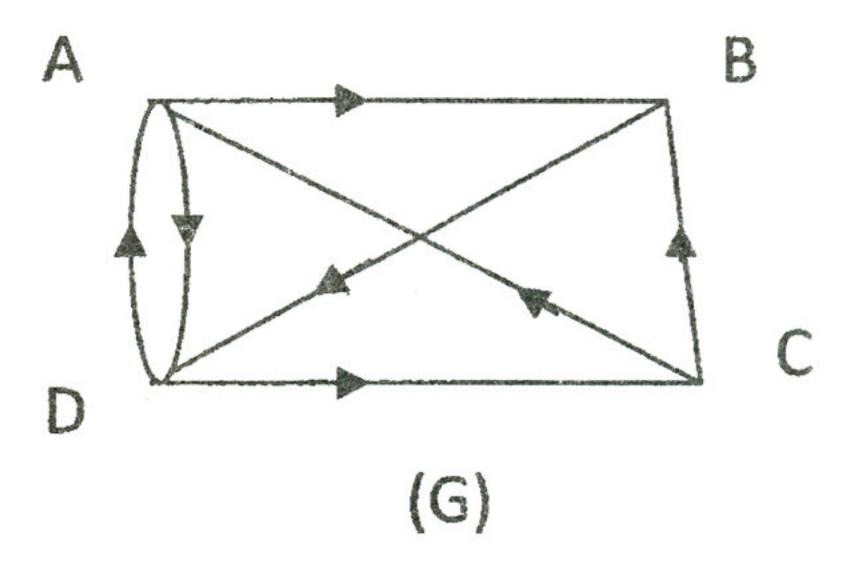
Épreuve : MATHÉMATIQUES

Section: Économie et Gestion

Durée: 2H

Coefficient: 2

Session principale


Le sujet comporte 3 pages.

Exercice 1: (4,5 points)

On considère le graphe orienté (G) ci-contre

1) Recopier et compléter le tableau suivant :

	Α	В	C	D
d ⁺	2			
ď			1	

- 2) Répondre par « Vrai » ou « Faux », en justifiant la réponse à chacune des affirmations suivantes :
 - a) Le graphe (G) admet une chaine orientée eulérienne.
 - b) Le graphe (G) admet un cycle orienté eulérien.
 - c) La matrice associée au graphe (G) en considérant ses sommets dans l'ordre

alphabétique est
$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} .$$

Exercice 2: (4,5 points)

Le tableau ci-dessous donne l'évolution du chiffre annuel (en milliards de dinars) de l'exportation de la Tunisie des produits électriques et mécaniques de l'année 2008 jusqu'à l'année 2014.

Année	2008	2009	2010	2011	2012	2013	2014
Rang x _i de l'année	1	2	3	4	5	6	7
Chiffre annuel yi	6.2	6	8,1	9,3	9,7	10,4	11,6
(en milliards de dinars)	6,2						

(Source: INS)

1) Représenter, dans un repère orthogonal, le nuage des points de la série statistique (x_i,y_i).

Dans la suite, on arrondira au centième les résultats des calculs.

- 2) Calculer les coordonnées du point moyen G associé à la série (x_i, y_i) puis placer ce point sur le graphique.
- 3) Justifier que le nuage des points permet d'envisager un ajustement affine.
- 4) a) Déterminer par la méthode des moindres carrées une équation de la droite de régression de y en x.
- b) En utilisant cet ajustement, estimer en milliards de dinars le chiffre de l'exportation de la Tunisie des produits électriques et mécaniques en l'année 2017.

Exercice 3: (5 points)

On considère la matrice
$$A = \begin{pmatrix} 25 & 12 & 8 \\ 4 & 3 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$
.

- 1)a) Calculer le déterminant de la matrice A.
 - b) En déduire que A est inversible.

2) Soit la matrice
$$B = \begin{pmatrix} 1 & -4 & 0 \\ -2 & 17 & -18 \\ 1 & -13 & 27 \end{pmatrix}$$
.

Calculer AxB et en déduire la matrice A⁻¹ inverse de A.

3) Un artisan fabrique trois types de jouets en bois : voitures, camions et bateaux.

Le tableau ci-dessous donne la quantité de bois en kilogrammes et le nombre d'heures de travail nécessaires pour la fabrication d'un jouet de chaque type.

Type de jouet	Voiture	Camion	Bateau	
Quantité de bois(en kg)	2,5	1,2	0,8	
Heures de travail pour la	Abourse	2 hauras	2 60,1100	
fabrication d'un jouet	4 heures	3 heures	2 heures	

Après 204 heures de travail et en utilisant 96 kg de bois, l'artisan a fabriqué au total 76 jouets. On se propose de déterminer le nombre de jouets fabriqués de chaque type.

a) Montrer que la situation se traduit par le système :

(S):
$$\begin{cases} 2,5x + 1,2y + 0,8z = 96 \\ 4x + 3y + 2z = 204 \\ x + y + z = 76 \end{cases}$$

b) Montrer que le système (S) est équivalent à AU=V où U=
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 et V= $\begin{pmatrix} 960 \\ 204 \\ 76 \end{pmatrix}$.

c) Déterminer le nombre de voitures, le nombre de camions et le nombre de bateaux

fabriqués.

Exercice 4: (6 points)

Soit la fonction f définie sur $]0;+\infty[$ par f(x)=x-1-lnx.

On désigne par (C) la courbe représentative de f dans un repère orthonormé (o, i, j).

- 1) Calculer $\lim_{x\to 0^+} f(x)$ puis interpréter graphiquement le résultat obtenu.
- 2)a) Montrer que $\lim_{x\to\infty} f(x) = +\infty$.
 - b) Calculer $\lim_{x\to +\infty} \frac{f(x)}{x}$ et $\lim_{x\to +\infty} (f(x)-x)$ puis interpréter graphiquement le résultat obtenu.
- 3)a) Montrer que pour tout $x \in \left]0; +\infty\right[f'(x) = \frac{x-1}{x}$.
 - b) Dresser le tableau de variation de f.
- 4) Tracer la courbe (C).
- 5) Soit la fonction g définie sur $]0;+\infty[$ par $g(x)=x\ln x$.
 - a) Vérifier que pour tout $x \in]0;+\infty[$ g'(x)=1+lnx.
- b) Calculer l'aire \mathcal{A} de la partie du plan limitée par la courbe (C), l'axe des abscisses et les droites d'équations : x=1 et x=e.