L.Ali Bourguiba Kalaa kebira

Prof : **Abdesslem Raoudha**

Le 10/2/2011

Classe: 4ECO₁

DEVOIR DE CONTROLE N 2

Durée: 2 heures

Exercice 1 : (4 points)

la courbe à coté est celle d'une fonction f définie sur

]1, $+\infty$ [, F est une primitive de f sur]1, $+\infty$ [et

 $U_n = f(n)$ pour tout $n \in IN^*$

Cocher la bonne réponse

1)La suite (U_n) est

2)la limite de (Un) est

b)2

c)0

a)0

b)2

c)3

4)F est

a) croissante sur]1, +∞[

b) décroissante sur]1, +∞[

c) constante sur]1, +∞[

Exercice 2: (4 points)

Soit
$$f(x) = \frac{x^2 + 4x + 6}{(x+2)^2}, x \in]-2, +\infty[$$

1)Justifier que f admet une primitive sur]-2, $+\infty[$

2) Vérifier que
$$f(x) = 1 + \frac{2}{(x+2)^2}$$

3)Trouver la primitive $\ \ F$ de $\ f$ sur $\]-2,+\infty[$ qui s'annule en $\ -1$

Exercice 3:(5 points)

Soit la suite réelle (U_n) définie sur IN par $U_0 = 1$ et $U_{n+1} = \frac{2}{3} U_n - 2$

- 1)Calculer U₁ et U₂
- 2)a)Montrer par récurrence que pour tout $n \in IN$, $U_n \ge -6$
 - b)Montrer que (Un) est croissante
- 3)Soit $V_n = U_n + 6$
- a)Montrer que (V_n) est une suite géométrique
- b)Exprimer V_n puis U_n en fonction de n
- c)Déterminer les limites de (V_n) et (U_n)

Exercice4: (7 points)

1)Soit
$$g(x) = x^4 + 2x^3 + x^2 + 2, x \in IR$$

a)Montrer que g'(x) =
$$2 x (2 x^2 + 3 x + 1)$$

b)Dresser le tableau de variation de g et déduire que pour tout $x \in IR$, g(x) > 0

2)Soit f(x) =
$$\frac{x^4 + x^3 - 6}{3(x+1)}$$
, x \in] -1 , + ∞ [

On note C sa courbe représentative dans un repère orthonormé

- a)Calculer $\lim_{x\to -1^+} f(x)$, $\lim_{x\to +\infty} f(x)$, $\lim_{x\to +\infty} \frac{f(x)}{x}$ et interpréter graphiquement ces résultats
- b)Montrer que $f'(x) = \frac{g(x)}{(x+1)^2}$ et dresser le tableau de variation de f
- c)Ecrire une équation de la tangente $\ T$ à $\ C$ au point d'abscisse $\ 0$
- d)Tracer C et T

