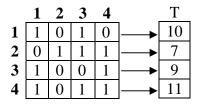
REPUBLIQUE TUNISIENNE	Sections : Sciences de l'informatique	
INISTERE DE D'EDUCATION ET DE LA FORMATION ***********************************	Algorithmique & Programmation	
DEVOIR DE SYNTHESE N°3	Date : 26 Mai 2009	
	Durée : 2h	Coefficient : 3
Exercice N°1: Ecrire une analyse d'un module qui permet de calcude la suite suivante :	uler et d'afficher les N	premiers éléments
		•••••
	•••••	••••••
	•••••	• • • • • • • • • • • • • • • • • • • •
Exercice N°2:		
On se propose de déterminer les coefficients de dévant la Methode à utiliser pour résoud		tion (a+b)":
 2. Ecrire une analyse puis déduire l'algorithme coefficients : Analyse : 	 a d'un modula narmatt	
, 1 111011 / 50 1	e a un module permeu	ant de déterminer ses
		ant de déterminer ses
		ant de déterminer ses
	e d'un module permett	ant de déterminer ses
	e d'un module permett	ant de déterminer ses
	e d'un module permett	ant de déterminer ses
	e d'un module permett	ant de déterminer ses
	e d'un module permett	ant de déterminer ses
	e d'un module permett	ant de déterminer ses
➤ Algorithme :	e d'un module permett	ant de déterminer ses
		ant de déterminer ses

	ice N°3 : one analyse d'un module qui permet de saisir un entier premier :
• • • • • • • •	
place sorte of L'obje rappor	mobile M. Sur la droite perpendiculaire en B à la droite (AB), on un point N tel que BN=2AM et deux autres points O et P de telle que MNOP soit un carré. (Voir figure ci-contre). ctif du problème est d'étudier l'évolution de l'aire de ce carré par et à la position du point M. La distance AM évoluant selon la position du point M sur le segment [AB], on pose AM=x. exprimer les longueurs BM et BN en fonction de x:
2.	Déterminer la surface du carré MNOP en fonction de x,
	Déterminer la valeur à donner à x (déclaration algorithmique d'un module) pour que la surface de carré soit maximale. Le pas de variation est une donnée.


Problème :

On se propose d'écrire un programme qui permet de :

- Remplir une matrice **M** de degré 4 par des entiers **binaires** (0 ou 1 seulement),
- Chaque ligne de la matrice **M** représente la conversion binaire d'un entier **X** de la base 10 ;
 - Trouver la valeur de X pour chaque ligne de M,
 - Associer les valeurs de X dans un tableau T,
- Trier puis afficher (en ordre décroissant) les éléments du tableau T,

Exemple:

Si M=

$$(1010)_2 = (10)_{10}$$
 comment? $2^3 \quad 2^2 \quad 2^1 \quad 2^0$ $1 \quad 0 \quad 1 \quad 0$ $1010 = 1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 1*8 + 0*4 + 1*2 + 0*1 = 10$

Le programme affichera: 11-10-9-7

Questions:

- 1. Analyser le problème en le décomposant en modules,
- 2. Analyser chacun des modules envisagés dans l'analyse du programme principal,
- 3. Déduire de ce qui précède l'algorithme du programme principal ainsi que les algorithmes des modules envisagés.