Lycée Cité El-Amel Mokhtar Ouardani 4^{ème} Maths

Devoir de contrôle n°2 (Mathématiques)

Année scolaire : 2022/2023 Date : Février Durée : 2 heures

« Le sang froid fait gagner des points »

Exercice n° 1 (4 points)

Sur la feuille annexe (figure 1) on a construit la courbe \mathscr{C} d'une fonction f définie sur $[0,+\infty[$ et dérivable sur $]0,+\infty[$ et la courbe \mathscr{C} de sa fonction dérivée dans un repère (0,i,j).

- 1) a- Tracer la demi-tangente à & au point O.
- b- Ecrire une équation de la tangente à la courbe & au point d'abscisse 1 et au point d'abscisse e.
- 2) a- Justifier que la restriction g de f à l'intervalle $[e^{-1},e]$ réalise une bijection de $[e^{-1},e]$ sur un intervalle J que l'on précisera.
- b- Montrer que g^{-1} est dérivable en 0 et à gauche en e. Déterminer $(g^{-1})'(0)$ et $(g^{-1})'_g(e)$.
- c- Tracer la courbe de la fonction $\,g^{-1}\,$ dans le même repère.

Exercice n° 2 (8 points)

Le plan est orienté dans le sens direct. sur la feuille annexe (figure 2), on a construit un rectangle

ABCD de centre O tel que:
$$(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2} [2\pi]$$
 et $AB = 2AD$.

Les points I, J et K sont les milieux respectifs des segments [AB], [ID] et [CD].

Le point E est le symétrie du point I par rapport à A.

- 1) Soit S la similitude directe de centre D telle que : S(I) = A.
- a- Déterminer le rapport et l'angle de S.
- b- Montrer que S(C) = I.
- 2) Soit f la similitude directe telle que : f(D) = I et f(A) = C.
- a- Déterminer le rapport et l'angle de f.
- b-Tracer les cercles & et & de centres respectifs A et C et passant par I.
- c- Soit Ω le centre de f. Montrer que Ω appartient à \mathscr{C} .
- d-Justifier que le cercle \mathscr{C} est l'image du cercle \mathscr{C} par f puis construire le point Ω .
- 3) La perpendiculaire à la droite (ΩD) passant par Ω recoupe \mathscr{C} en F.
- a- Caractériser f0f et montrer que f(I) = F.
- b- Montrer que le quadrilatère ICFD est un carré.
- 4) Soit R = SOf.
- a- Caractériser R.
- b- Construire Ω' le projeté orthogonal de D sur (ΩE) puis montrer que $R(\Omega) = \Omega'$.
- c- Montrer que $J\Omega\Omega'$ est un triangle rectangle et isocèle en J.

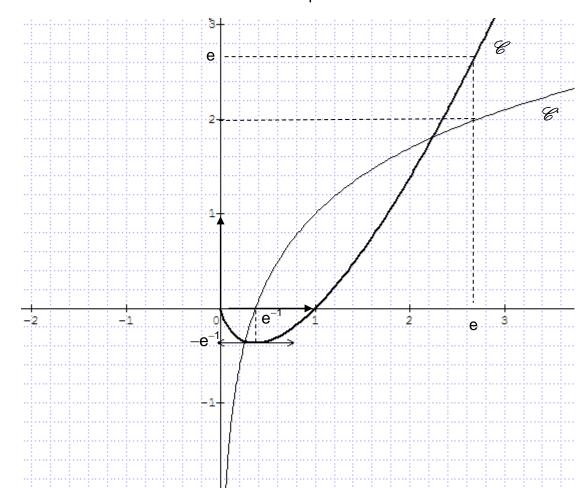
Exercice n° 3 (8 points)

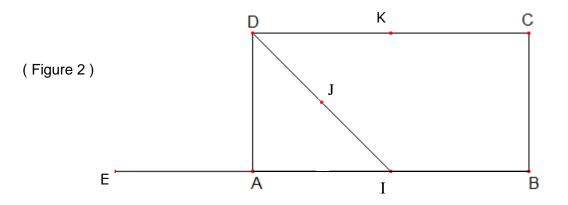
Soit f la fonction définie sur $[0,+\infty[$ par : $f(x) = \frac{1-x^2}{1+x^2}$. I / 1) a- Dresser le tableau de variation f.

- b- Montrer que f réalise une bijection de [0,+∞[sur un intervalle J que l'on déterminera.
- c- Tracer les courbes C_f et $C_{f^{-1}}$ dans un repère orthonormé (O,\vec{i},\vec{j}) .
- 2) Soit F la fonction définie sur $[0, \frac{\pi}{2}[$ par : $F(x) = \int_0^{\tan(x)} \frac{1}{1+t^2} dt$.
- a- Montrer que F est dérivable sur $[0, \frac{\pi}{2}[$ et déterminer F'(x).
- b- Montrer que pour tout réel x de $[0, \frac{\pi}{2}[, F(x) = x \text{ puis calculer } \int_0^1 \frac{1}{1+t^2} dt$.
- c- Calculer l'aire A de la partie du limitée par la courbe $\,C_f\,$, la droite des abscisses et les droites d'équations respectives : x=0 et x=1.

- 3) a- Montrer que pour tout réel x de J, $f^{-1}(x) = \sqrt{\frac{1-x}{1+x}}$.
- b- Soit $I = \int_0^1 \sqrt{\frac{1-x}{1+x}} dx$. Justifier que $I = \frac{\pi}{2} 1$.
- II / Soit la suite (Un) définie sur \square par : $U_0 = \int\limits_0^1 \sqrt{1-x^2} \ dx$ et $U_n = \int\limits_0^1 x^n . \sqrt{1-x^2} \ dx$ pour tout $n \in \square^*$.
- 1) a- Calculer U₁.
- b- A l'aide d'une intégration par parties, montrer que pour tout $n \in \square^*$, $U_{n+2} = \frac{n+1}{n+4} U_n$.
- c- Déduire la valeur de U₃.
- 2) Soit la suite (S_n) définie sur \square * par : $S_n = \sum_{k=1}^n (-1)^k U_K$
- a- Montrer que pour tout $n \in \square^*$, $S_n = (-1)^n \int_0^1 \frac{x^{n+1}}{1+x} \sqrt{1-x^2} \ dx \int_0^1 \frac{x}{1+x} \sqrt{1-x^2} \ dx$.
- b- Sachant que $U_0=\frac{\pi}{4}$, montrer que $\int\limits_0^1 \frac{x}{1+x} \sqrt{1-x^2} \ dx = 1-\frac{\pi}{4}$.
- c- Montrer que pour tout $n \in \square^*$, $0 \le \int_0^1 \frac{x^{n+1}}{1+x} \sqrt{1-x^2} \ dx \le \frac{1}{n+2}$. Déterminer alors $\lim_{n \to +\infty} S_n$.

Annexe à rendre avec la copie





(Figure 1)

