Profs	Mechmeche Imed
Lycée	Nabhani
Niveau	4 ^{ème} Maths

Devoir de contrôle N°2

Matière	Maths
Date	07/12/2017
Durée	2 h

Exercice 1: (4 pts)

Donner la bonne réponse avec justification.

- 1) Soit U la suite définie sur \mathbb{N}^* par : $U_n = n^2 \left(1 cos^2 \left(\frac{\pi}{n}\right)\right)$ alors
 - a) $\lim U_n = \pi^2$; b) $\lim U_n = \frac{1}{2}$; c) $\lim U_n = +\infty$
- 2) f est une fonction dérivable sur [0,1] telle que f(0)=0 on pose $U_n=n$ $f\left(\frac{1}{n}\right)$, $n\in\mathbb{N}^*$ alors a) $\lim U_n=0$; b) $\lim U_n=f'(0)$; c) $\lim U_n=+\infty$
- 3) f est une bijection strictement croissante de $[1, +\infty[$ sur [0,1[et U la suite définie sur \mathbb{N}^* par $U_n = f^{-1}\left(n\sin\left(\frac{1}{n}\right)\right)$ alors a) $\lim U_n = 1$; b) $\lim U_n = 0$; c) $\lim U_n = +\infty$
- 4) (U_n) et (V_n) sont deux suites telles que $(U_n + V_n)$ et $(U_n V_n)$ convergent alors : a) (U_n) et (V_n) convergent b) (U_n) et (V_n) divergent c) on ne peut pas conclure

Exercice 2: (8 pts)

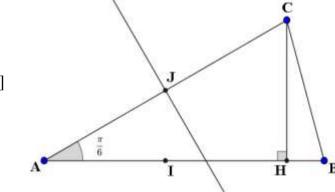
Dans la figure ci-contre ABC est un triangle isocèle en

A tel que
$$(\widehat{\overrightarrow{AB},\overrightarrow{AC}}) \equiv \frac{\pi}{6} [2\pi]$$

H est le projeté orthogonal de C sur (AB)

I et J les milieux respectifs des segments [AH] et [AC]

 Δ est la médiatrice de [AC].



- 1) a) Montrer qu'il existe un unique antidéplacement f tel que f(C) = A et f(H) = I
 - b) Montrer que f est une symétrie glissante dont on précisera l'axe et le vecteur
 - c) Soit D le symétrique de H par rapport à J , montrer que $\,f(J)=D\,$
 - d) Montrer que $f((AB)) = \Delta$
 - e) La parallèle à (AC) passant par D coupe Δ en K, montrer que f(I)=K
- 2) Soit $g = S_{\Delta} \circ f$
 - a) Déterminer g(H) et g(C)
 - b) En déduire la nature et les éléments caractéristiques de g
 - c) Montrer alors que le triangle CIK est équilatéral
 - d) on pose f(B)=P , montrer que g(B)=P et en déduire que $P\in\Delta\cap\Delta'$ où $\Delta'=med[CB]$
 - e) Soit $h=R_{\left(J,\frac{-\pi}{3}\right)}\circ t_{\overrightarrow{HJ}}$ montrer que h=g
- 3) Soit L = A * D en utilisant le fait que f(I) = K et que h = g prouver que :
 - a) (HJ) est la médiatrice de [KL]
 - b) Le triangle JLK est équilatéral.

4) On munit le plan du repère orthonormé direct (A, \vec{u}, \vec{v}) avec $\vec{u} = \overrightarrow{AB}$

- a) Déterminer l'écriture exponentielle de $Z_{\mathcal{C}}$ affixe du point \mathcal{C}
- b) Déterminer l'écriture complexe de ${\it g}$
- c) En déduire les coordonnées du point P

Exercice 3: (8 pts)

1) Soit la fonction f définie sur]0,1] par $f(x) = \frac{2\sqrt{1-x}}{x}$

- a) Etudier la dérivabilité de f en 1 et interpréter le résultat graphiquement.
- b) Dresser le tableau de variation de f.

2) a) Montrer que l'équation f(x) = x admet une unique solution a dans]0,1[et que 0.8 < a < 1

- b) Montrer que f est une bijection de]0,1] sur $[0,+\infty[$
- c) prouver que f^{-1} est dérivable sur $[0, +\infty[$
- d) tracer les courbes C_f et $C_{f^{-1}}$ dans un même repère orthonormé.

3) Montrer que pour tout $x \in [0, +\infty[$ $f^{-1}(x) = \frac{2}{1+\sqrt{1+x^2}}$

4) Soit h la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par : $h(x) = \begin{cases} f^{-1}(\tan x) & si \ x \neq \frac{\pi}{2} \\ 0 & si \ x = \frac{\pi}{2} \end{cases}$

a) Montrer que h est continue sur $\left[0, \frac{\pi}{2}\right]$.

b) Vérifier que $h(x) = \frac{2 \cos x}{1 + \cos x}$ pout tout $x \in \left[0, \frac{\pi}{2}\right]$.

c) En déduire que h est dérivable sur $\left[0,\frac{\pi}{2}\right]$ et calculer h'(x)

d) Montrer que h réalise une bijection de $\left[0,\frac{\pi}{2}\right]$ sur un intervalle J que l'on précisera

5) Montrer que h^{-1} est dérivable sur [0,1[et expliciter $(h^{-1})'(x)$ en fonction de x

Bon travaíl