<u>Lycée Houmet Souk</u>	
Prof: Loukil Mohamed	d

22 Janvier 2018

EXERCICE N : 1 (3 points)

On considère, dans le plan muni d'un repère orthonormé, la parabole (P) d'équation : $y = x^2$. Soit $M(x, x^2)$ un point de **(P)** et **D** la fonction définie sur IR par : **D**(x) = AM^2 avec **A**(3,0).

- **1)** Montrer que pour tout $x \in IR$; **D** $(x) = x^4 + x^2 6x + 9$.
- **2)** Vérifier que pour tout $x \in IR$; **D'** $(x) = 2(x-1)(2x^2 + 2x + 3)$.
- **3) a)** Dresser le tableau de variations de la fonction **D**.
 - **b**) On désigne par **B** le point de la parabole (**P**) le plus proche de **A**. Déterminer les coordonnées de **B** .Expliquer

EXERCICE N : 2 (6 points)

A) Soit la fonction f définie par : $f(x) = \frac{ax^2 - 3x + b}{x - 1}$.

On désigne par (Cf) la courbe représentative de f dans le repère orthonormé R (O, \vec{i} , \vec{j}).

- **1)** Calculer, en fonction de a et b, f'(x) pour tout $x \in D_{f'}$.
- 2) Déterminer les réels a et b, pour lesquelles, (Cf) passe par A (0, -6) et f admette un extremum en - 1.
- B) On prend pour la suite: a = 1 et b = 6.
 - **1)** Dresser le tableau de variations de f.
 - **2)** Préciser les extremums de f et leur nature.

C) Soit la fonction g définie sur IR par : $\begin{cases} g(x) = 4 + (2 - x)\sqrt{2 - x} & \text{si} \quad x < 2 \\ g(x) = f(x) & \text{si} \quad 2 \le x \end{cases}$

On désigne par (Cg) la courbe représentative de f dans le repère orthonormé $R(O,\vec{i},\vec{j})$.

- 1) Montrer que g est continue en 2.
- 2) a) Etudier la dérivabilité de g en 2.
 - b) Donner des équations cartésiennes des demi-tangentes à (Cg) au point B d'abscisse 2.
- **3)** Montrer que g est dérivable sur] ∞ ; 2 [et que pour tout $x \in$] ∞ ; 2 [; $g'(x) = -\frac{3}{2}\sqrt{2-x}$.
- **4)** Dresser le tableau de variations de g sur IR .

EXERCICE N: 3 (6 points)

- **A)** Soit h la fonction définie sur $[0,\pi]$ par : $h(x) = a \cos 2x + b \cos x \frac{1}{2}$ où a et b sont deux constantes. On désigne par **(Ch)** la courbe représentative de h dans un repère orthonormé.
 - **1)** Calculer pour tout $x \in [0, \pi]$, h'(x) en fonction de a et b.
 - **2**) Déterminer les réels a et b pour lesquels h admette un extremum en $\frac{2\pi}{3}$ égale à -2 .
- **B)** Soit f la fonction définie sur $[0, \pi]$ par : $f(x) = \cos 2x + 2\cos x \frac{1}{2}$.
 - **1)** Montrer que pour tout $x \in [0, \pi], f(x) = 2\cos^2 x + 2\cos x \frac{3}{2}$.
 - **2) a)** Résoudre dans $[0, \pi]$ l'équation : f(x) = 0.
 - **b**) Résoudre dans $[0, \pi]$ l'inéquation : $2 \cos x + 1 \ge 0$.
 - **3) a)** Montrer que pour tout $x \in [0, \pi]$, $f'(x) = -2 \sin x (1 + 2 \cos x)$.
 - **b**) Etudier les variations de f .
 - **c**) Déduire le signe de f(x) pour tout $x \in [0, \pi]$.
 - **4)** Calculer: $\lim_{x \to \frac{\pi}{3}^+} \frac{1}{f(x)}$ et $\lim_{x \to \frac{\pi}{3}} \frac{2\cos 2x + 4\cos x 1}{6x 2\pi}$.

EXERCICE N: 4 (5 points)

A) Le plan complexe P est rapporté à un repère orthonormé direct (O , \vec{u} , \vec{v}) .

On considère les points A et B et C d'affixes respectives $Z_A = -2$, $Z_B = -1 + i$ et $Z_C = i$

Soit
$$f: P \setminus \{A\} \rightarrow P$$
 ; $M_{(Z)} \mapsto M'_{(Z')}$ avec: $Z' = \frac{iZ + i + 1}{Z + 2}$.

- **1) a)** Vérifier que : $Z' = \frac{i(Z+1-i)}{Z+2}$
 - **b)** Déterminer la nature de l'ensemble (Δ) des points M tels que |Z'|=1.
 - **c)** Déterminer la nature de l'ensemble (Γ) des points M tels que Z' est un réel .
- **2) a)** Vérifier que pour tout $Z \neq -2$ on a: $Z' i = \frac{1-i}{Z+2}$.
 - **b**) En déduire que pour tout $M \neq A$, on a: CM'. $AM = \sqrt{2}$ et $(\overrightarrow{u}, \overrightarrow{CM'}) + (\overrightarrow{u}, \overrightarrow{AM}) \equiv -\frac{\pi}{4}(2\pi)$.
 - c) Prouver alors que si M appartient au cercle (e) de centre A et de rayon 1 alors M' appartient
 à un cercle (e') dont on précisera le centre et le rayon .
- **3**) Soit E le point d'affixe $Z_E = -\frac{3}{2} + i \frac{\sqrt{3}}{2}$
 - **a**) Vérifier que : $Z_E Z_A = \cos(\frac{\pi}{3}) + i \sin(\frac{\pi}{3})$.
 - **b)** En utilisant la questions **2)**, construire le point E' = f(E).

