/// ||||

Ш

Devoir de contrôle n°1

Proposé par : Mme Mestoura Anissa

Ш

Ш

Pour la classe : 3^{ème} sc.exp ₁

Durée de l'épreuve : 2 heures

Exercice n°1: (3 pts)

Pour chacune des questions suivantes choisir <u>la</u> bonne réponse.

1)
$$f$$
 est la fonction définie par : $f(x) = \frac{4}{x^2+4}$

a) f est bornée sur $\mathbb R$

b) f est majorée sur $\mathbb R$

c) f est minorée sur $\mathbb R$

2)
$$f$$
 est la fonction définie par : $f(x) = \begin{cases} \frac{2x^2+1}{x^2+1} & si \ x \neq 1 \\ 2 & si \ x = 1 \end{cases}$

a) f est paire

b) f est impaire

c) f est ni paire ni impaire

3) \vec{U} et \vec{V} sont deux vecteurs tels que : $(\vec{U} - \vec{V}) \perp (\vec{U} + \vec{V})$ alors :

 $a) \, \|\vec{U}\| = \|\vec{V}\|$

b) $\vec{U} = \vec{V}$

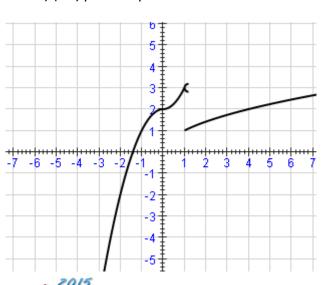
c) $\vec{U} \perp \vec{V}$

4) ABC un triangle , l'ensemble des points M du plan vérifiant : $\overrightarrow{AB} \cdot \overrightarrow{AM} = \overrightarrow{AB} \cdot \overrightarrow{AC}$ est une droite perpendiculaire à :

a) (AC) passant par C

b) (AB) passant par C

c) (AB) passant par A


Exercice n°2: (4 pts)

On donne dans le repère ci-contre la courbe d' une fonction g définie sur \mathbb{R} . Répondre graphiquement :

1) g est-elle continue sur $\mathbb R$? justifier.

2) déterminer :

$$\lim_{x\to 0^+} g(x) \; ; \; \lim_{x\to 0^-} g(x) \; ; \; \lim_{x\to 1^+} g(x) \; ; \; \lim_{x\to 1^-} g(x)$$

- 3) déterminer le domaine de continuité de g
- 4) déterminer les images des intervalles]-2,0[et [1,4]

Exercice n°3: (5 pts)

Soit f la fonction définie par :

$$f(x) = \begin{cases} \frac{2-x}{x^2 - 5x + 6} & \text{si } x < 2\\ \sqrt{x - 1} & \text{si } x \ge 2 \end{cases}$$

- 1) déterminer le domaine de définition de f.
- 2) justifier la continuité de f sur $[2, +\infty[$.
- 3) étudier le sens de variation de f sur $[2, +\infty[$.
- 4) soit h la fonction définie sur $[2, +\infty[$ par $h(x) = f(x) \frac{3}{2}$.

Montrer que l'équation h(x) = 0 admet une unique solution dans [3,4].

- 5) a) calculer $\lim_{x\to 2^-} f(x)$ et $\lim_{x\to 2^+} f(x)$
 - b) en déduire que f est continue en 2.
- 6) déterminer le domaine de continuité de f

Exercice n°4: (8 pts)

ABC un triangle tel que AB=4,AC=6 et BC=8, I et J sont les milieux respectifs des segments [AC] et [BC].

- 1) a) montrer que $BC^2 = AB^2 + AC^2 2\overrightarrow{AB}.\overrightarrow{AC}$
 - b) en déduire \overrightarrow{AB} . \overrightarrow{AC} puis $\cos B \hat{AC}$
- 2) montrer que \overrightarrow{IB} . $\overrightarrow{IC} = -12$
- 3) soit ζ l'ensemble des points M tel que : \overrightarrow{MB} . $\overrightarrow{MC} = -12$

Montrer que ζ est un cercle dont on déterminera le centre et le rayon.

- 4) soit Δ l'ensemble des points M du plan vérifiant : $MB^2-MC^2=32$
 - a) montrer $MB^2 MC^2 = 2\overrightarrow{CB}.\overrightarrow{MJ}$
 - b) déterminer alors Δ
- 5) montrer que Δ et ζ sont tangents.

Bon Courage

