Mathématiques

Lycée Ibn Sina Menzel Bourguiba

Devoir de contrôle n°1

samdi :02-11-2013

Durée: 120 minutes

Exercice 1: (3 points)

Pour chacune des questions suivantes une seule des trois réponses proposées est exacte.

Cocher la bonne réponse. Aucune justification n'est demandée.

- I-) Soit f la fonction définie par : $f(x) = \frac{x^2}{|x+1|-|x-1|}$
- 1°) Le domaine de définition de f est :

a) $]-\infty$; $-1[\cup]1$; $+\infty[$; b)]-1; 1[; c) IR^*

2°) La fonction f est:

a) Paire

b) Impaire ; c) Ni paire ni impaire

3) A et B deux points du plan et I le milieu de [AB].

1°) a) $\overrightarrow{IA}.\overrightarrow{IB} = 0$; b) $\overrightarrow{IA}.\overrightarrow{IB} = IA^2$; c) $\overrightarrow{IA}.\overrightarrow{IB} = -\frac{AB^2}{A}$

Exercice 2 :(6points)

On considère dans le plan P deux points A et B tel que AB=4

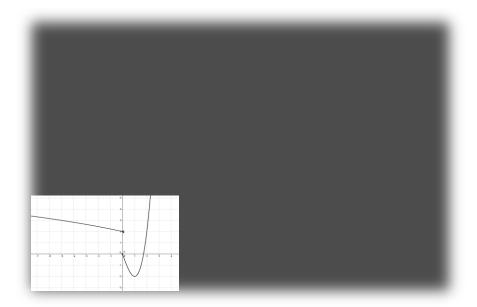
- 1) Soit C un point de P vérifiant AC=3 et $\overrightarrow{AB} \cdot \overrightarrow{AC} = 6$. Vérifier que $BAC = \frac{\pi}{2}$ puis construire C
- 2) Placer les points D et E définis par : $\overrightarrow{AD} = -2\overrightarrow{AB}$ et $\overrightarrow{AE} = 3\overrightarrow{AC}$
 - a) Calculer les produits scalaires : $\overrightarrow{AB} \cdot \overrightarrow{AD}$, $\overrightarrow{AE} \cdot \overrightarrow{AC}$ et $\overrightarrow{AD} \cdot \overrightarrow{AE}$
 - b) En déduire le produit scalaire $\overrightarrow{CD} \cdot \overrightarrow{BE}$
- 3) Vérifier que E est le barycentre des points pondérés (A,2) et (C,-3)
- 4) Montrer que pour tout point M du plan, on a : $3MC^2 2MA^2 = ME^2 54$
- 5) Soit φ l'ensemble des points M du plan tel due : $3MC^2 2MA^2 = -18$
 - a) Vérifier que C∈φ
 - b) Déterminer et construire φ

Exercice3:(5points)

Soit f la fonction définie par : $f(x) = \begin{cases} x^3 - 3x & \text{si } x \ge 0 \\ \sqrt{4 - x} & \text{si } x \ne 0 \end{cases}$ et C_f sa courbe

1) Graphiquement déterminer le domaine de définition de f

- 2) f est elle continue à droite en 0 ? à gauche en 0 ? en 0 ? Justifier. Donner le domaine de continuité de f
- 3) Justifier la continuité de f sur chacun des intervalles : $]-\infty,0[$ et $[0,+\infty[$
- 4) Dresser le tableau de variation de f
- 5) f est elle minoré sur son domaine de définition ? si oui donner un minorant
- 6) Discuter suivant les valeurs de m le nombre des solutions de l'équation f(x) = m
- 7) Déterminer les images par f de $\begin{bmatrix} 0,2 \end{bmatrix}$, $\begin{bmatrix} 1,2 \end{bmatrix}$ et $\begin{bmatrix} -5,0 \end{bmatrix}$



Exercice 4:(3points)

Dans le plan orienté, on considère les points M, N et Q tel que :

$$(\overrightarrow{MN}, \overrightarrow{MP}) = \frac{31\pi}{14} [2\pi] ; (\overrightarrow{MP}, \overrightarrow{MQ}) = \frac{75\pi}{6} [2\pi] \text{ et } (\overrightarrow{MN}, \overrightarrow{MR}) = \frac{-72\pi}{7} [2\pi]$$

- 1) Déterminer les mesures principales de ces angles
- 2) Déterminer la mesure principale de : $(\overrightarrow{MQ}, \overrightarrow{MR})$
- 3) Que peut-on dire des points M,Q et R

Exercice 5:(3points)

Soit f ; la fonction définie sur IR par : f(x) = x(2-x)

- 1) déterminer le réels b tel que $f(x) = -(x-1)^2 + b$
- 2) montrer que f est croissante sur $\left]-\infty,1\right]$ et que f est décroissante sur $\left[1,+\infty\right[$
- 3) montrer que f est majorée par 1.
- 4) soit g la fonction définie par g(x) = $-x^2 + 2x \frac{1}{x+1}$, montrer que g est croissante sur $]-\infty,1]$