Lycée T.H Regeub	Devoir de contrôle n °1 en	Classe : 3SC 2
	Mathématiques	
Date: 15/11/2018	Durée : 2heures	Prof : Abidi Ridha

Exercice n°1 (7points)

Dans le plan P , on considère le triangle ABC tels que AB = 2 , AC = 6 et $\widehat{BAC} = \frac{\pi}{3}$. Soit I le milieu de [BC]

- 1) a) Calculer \overrightarrow{AB} . \overrightarrow{AC} en déduire que BC = 2 $\sqrt{7}$
 - b) Montrer que AI = $\sqrt{13}$
- 2) Soit Γ = { M ∈ P / M B^2 + M C^2 = 46 }
- a) Montrer que pour tout point M du plan on a : $\,\mathrm{M}B^2\,+\mathrm{M}C^2=2\,\mathrm{M}I^2+\,14\,$
- b) Déterminer et construire alors l'ensemble Γ
- 3) Soit $\Delta = \{ M \in P / MB^2 MC^2 = -32 \}$
- a) Vérifier que le point $A \in \Delta$
- b) Montrer que pour tout point M du plan on a : $MB^2 MC^2 = 2 \overrightarrow{IM} \cdot \overrightarrow{BC}$
- c) Déterminer et construire alors l'ensemble Δ

Exercice n ° 2 (5points)

Soit la fonction f définie sur \mathbb{R} par $f(x) = 1 - \frac{2x^2}{1+x^2}$

- ${\bf 1}$) a) Montrer que f est une fonction paire . Interpréter graphiquement ce résultat
 - b) Montrer que pour tout réel a et b on a : $f(a) f(b) = \frac{2(b^2 a^2)}{(a^2 + 1)(b^2 + 1)}$
- c) Montrer que f est décroissante sur $[\ 0\ ,+\infty[$ en déduire les variations de f sur $]\ -\infty$, $0\]$
- $\mbox{\bf d}$) Justifier alors que f admet un maximum en $\mbox{\bf 0}$
- 2) a) Montrer que $\forall x \in \mathbb{R}$ on a: $f(x) = \frac{1-x^2}{1+x^2}$
 - b) Montrer que $\forall x \in \mathbb{R}$ on a: $-1 \le f(x) \le 1$
- 3) Soit la fonction g définie par g $(x) = \sqrt{1-f^2\left(x\right)}$
- a) Montrer que g est définie sur $\ensuremath{\mathbb{R}}$

Exercice n ° 3 (4points)

Soit la fonction f définie par $f(x) = \sqrt{x-1} - \frac{1}{x^2}$

- 1) a)Déterminer D_f
 - b)Montrer que f est continue sur $[1, +\infty]$
- 2) a) Montrer que f est croissante $\sup [1,+\infty[$ en déduire que f est minorée par (-1)
 - b) Montrer que l'équation f(x)=0 admet une seule solution α dans [1, 2] et que
- $1,3 < \alpha < 1$, 4 en déduire le signe de f(x) sur $[1,+\infty)$

Exercice n °4 (4points)

- I) Répondre par vrai ou faux
- 1) Soit f une fonction définie et positive sur $\mathbb R$. Si la fonction $\sqrt f$ est continue sur $\mathbb R$ alors f est continue sur $\mathbb R$
- 2) ABC est un triangle tel que AB = 3 , AC = 4 et $\widehat{BAC} = \frac{2\pi}{3}$ alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = -6$
- 3) La fonction f définie sur [-1,1] par $f(x)=\sqrt{1-x}$ $+\sqrt{x+1}$ est impaire
- 4) Soit g une fonction continue sur [-2, 5] tel que g (-2) = -3 et g(5) = 2 alors $\frac{1}{g}$ est continue sur [-2, 5]
- II) Mettre une croix devant la réponse exacte
- 1) Sur \mathbb{R}_+ , la fonction $f(x) = 2 \frac{1}{\sqrt{1+x}}$
- a) n'est pas majorée ; b) n'est pas bornée ; c) est bornée
- 2) Si $\vec{u} \left({3 \atop -1} \right)$ et $\vec{v} \left({1 \atop -2} \right)$ alors $\| \vec{u} + \vec{v} \|^2$ est égale :
- a) 25 ; b) 15 ; c) 5
- 3) L'ensemble des points M du plan tel que \overrightarrow{MA} . $\overrightarrow{MB}=0$ et I = A * B est :
- a) un cercle de centre I ; b) un cercle de centre A ; c) une droite perpendiculaire à (AB)
- 4) la fonction définie sur [1 , $+\infty$ [par $f(x) = \frac{1}{1+x} \sqrt{x-1}$ est :
- a) croissante ; b) décroissante ; c) ni croissante ni décroissante

Lycée T.H Regeub	Devoir de contrôle n °1 en	Classe : 3SC 1
	Mathématiques	
Date: 15/11/2018	Durée : 2heures	Prof : Abidi Ridha

Exercice n°1 (7points)

Dans le plan P , on considère un triangle ABC tels que AB = 2 , AC = 6 et $\widehat{BAC} = \frac{2\pi}{3}$. Soit I le milieu de [BC] et H le projeté orthogonal de C sur (AB)

- 1) a) Calculer \overrightarrow{AB} . \overrightarrow{AC} en déduire que BC = 2 $\sqrt{13}$ et que AH = 3
 - b) Montrer que AI = $\sqrt{7}$
 - c) Montrer que H est le barycentre de (A, 5) et (B, -3)
- 2) Soit $\Gamma = \{ M \in P / 5MA^2 3MB^2 = 20 \}$
- a) Montrer que pour tout point M du plan on a : $\,\,$ 5M $A^2\,\,$ 3 M $B^2\,$ = 2 M $H^2\,$ 30
- b) Déterminer et construire alors l'ensemble Γ
- 3) Soit $\Delta = \{ M \in P / MA^2 MB^2 = 4 \}$ et J = A * B
- a) Vérifier que le point $B \in \Delta$
- b) Montrer que pour tout point M du plan on a : $\,{
 m M}A^2\,\,$ $\,{
 m M}B^2=2\,\,\overrightarrow{JM}\,.\overrightarrow{AB}$
- c) Déterminer et construire alors l'ensemble $\Delta\,$ puis déduire la position relative de Γ et $\Delta\,$

Exercice n ° 2 (5points)

Soit la fonction f définie sur \mathbb{R} par $f(x) = \sqrt{1 + x^2} - |x|$

- ${\bf 1}$) a) Montrer que f est une fonction paire . Interpréter graphiquement ce résultat
 - b) Montrer que f est continue sur ${\mathbb R}$
 - b) Montrer que pour tout réel $x \ge 0$ on a : $f(x) = \frac{1}{\sqrt{1+x^2}+x}$
- c) Montrer que f est décroissante sur $[\ 0\ ,+\infty[$ en déduire les variations de f sur $]\ -\infty$, $0\]$
- d) Justifier alors que f admet un maximum en $\mathbf{0}$
- 2) Montrer que $\forall x \in \mathbb{R} \text{ on a}: 0 \leq f(x) \leq 1$
- 3) Soit la fonction g définie par g $(x) = 1 \frac{1}{1+f(x)}$

- a) Montrer que g est définie sur \mathbb{R} et que $0 \le g(x) \le \frac{1}{2}$
- b)Montrer que g es croissante sur] ∞ , 0]

Exercice n ° 3 (4points)

Soit la fonction f définie par $f(x) = \frac{1}{2-x} - \sqrt{1-x}$

- 1) a) Déterminer D_f
 - b)Montrer que f est continue sur] $-\infty$, 1]
- 2) a) Montrer que f est croissante $\mbox{ sur }]-\infty$, 1] en déduire que f est majorée par 1
 - b) Montrer que l'équation f(x)=0 admet une seule solution α dans [0, 1]
 - c) Déduire le signe de f(x) sur] $-\infty$, 1]

Exercice n °4 (4points)

- I) Répondre par vrai ou faux
- 1) Soit f une fonction définie sur $\mathbb R$ telle que f est majorée par 0 sur $\mathbb R$. Si la fonction
- |f| est continue sur \mathbb{R} alors f est continue sur \mathbb{R}
- 2) ABC est un triangle tel que AB = 3 , AC = 4 et $\widehat{BAC} = \frac{2\pi}{3}$ alors BC = $\sqrt{31}$
- 3) Si $\|\overrightarrow{u} + \overrightarrow{v}\| = \|\overrightarrow{u}\| + \|\overrightarrow{v}\|$ alors \overrightarrow{u} et \overrightarrow{v} sont colinéaires de sens contraire
- 4) Soit g une fonction continue sur [2 , 5] tel que g (-2) = -3 et g est strictement décroissante sur [2 , 5] alors $\frac{1}{g}$ est continue sur [-2 , 5]
- II) Mettre une croix devant la réponse exacte
- 1) Sur \mathbb{R} , la fonction $f(x) = \frac{2}{4 + x^2}$
- a) n'est pas majorée ; b) n'est pas minorée ; c) est bornée
- 2) Si $\vec{u} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ alors $\|\vec{u} \vec{v}\|^2$ est égale : a) 3 ; b) $\sqrt{3}$; c) 9
- 3) Si $\|\vec{u}\| = \|\vec{v}\|$ alors : a) $\vec{u} = \vec{v}$; b) $\vec{u} = \vec{v}$ ou $\vec{u} = -\vec{v}$; c) $(\vec{u} + \vec{v}) \perp (\vec{u} \vec{v})$
- 4)la fonction définie sur [0, $+\infty$ [par $f(x) = \frac{1}{1+x} x^2$ est :
- a) croissante ; b) décroissante ; c) ni croissante ni décroissante

Lycée T.H Regeub	Devoir de contrôle n °1 en	Classe: 4 Techniques 1
	Mathématiques	
 Date: 16/11/2018	Durée : 2heures	Prof: Abidi Ridha

Exercice n°1 (7 points)

- 1) On considère dans $\mathbb C$ l'équation (E): $z^2-2(1+i)e^{i\frac{\pi}{3}}z+4e^{i\frac{7\pi}{6}}=0$
 - a) Vérifier que $z_0=2e^{i\frac{\pi}{3}}$ est une solution de (E)
 - b) Déduire l'autre solution de (E)
- 2) Le plan complexe est rapporté à un repère orthonormé (0 , \vec{u} , \vec{v}). On note A , B et C les points d'affixes respectives $Z_A=1+i\sqrt{3}$, $Z_C=-\sqrt{3}+i$ et $Z_B=2\sqrt{2}$ $e^{i\frac{\pi}{12}}$
 - a) Donner l'écriture exponentielle de $\,Z_{A}\,\,$ et $\,\,Z_{C}\,\,$ puis construire les points A $\,$ et C
 - b) Montrer que le triangle OAC est rectangle et isocèle en O
 - c) Ecrire (1-i) sous forme exponentielle puis déduire que(1-i) $Z_A=Z_B$
 - d) Montrer que OBAC est un parallélogramme puis construire le point B
- 3) a) Ecrire Z_B sous forme algébrique
 - b) Déduire alors $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$
- 4) Construire le cercle (C) de centre O et de rayon 2 $\sqrt{2}$.La perpendiculaire à (OB) passant par O coupe le cercle (C) en un point D d'affixe Z_D telle que Im (Z_D) est positive
- a) Justifier que $Z_D=iZ_B$
- b) Montrer que OADC est un carré

Exercice n°2 (4points)

Soit la suite (U_n) définie sur $\mathbb N$ par $\left\{ egin{array}{ll} U_0=1 \\ U_{n+1}=\sqrt{2+U_n} \end{array}
ight.$; n ϵ $\mathbb N$

- 1) Montrer que $\forall \ n \in \mathbb{N}$ on a : $0 < U_n < 2$
- 2) a) Montrer que la suite U_n est croissante
 - b) En déduire que \mathcal{U}_n est convergente et calculer sa limite L
- 3) a) Montrer que $\forall n \in \mathbb{N}$ on a: $0 < 2 U_{n+1} < \frac{1}{2} (2 U_n)$

- b) En déduire par récurrence que $\forall n \in \mathbb{N}$ on a : $0 < 2 U_n \le (\frac{1}{2})^n$ puis retrouver la limite de la suite U_n
- c) Soit la suite V_n = n^2 ($2-U_n$) , on admet que $\lim_{n\to+\infty}\frac{n^2}{2^n}=0$ étudier $\lim_{+\infty}V_n$
- d) Montrer que $\forall n \in \mathbb{N}$ on a : $U_n = 2\cos\left(\frac{\pi}{3 \cdot 2^n}\right)$ en déduire la valeur de $\cos\left(\frac{\pi}{12}\right)$

Exercice n °3 (6 points)

Soit la fonction f définie sur \mathbb{R} par $f(x) = \begin{cases} x^2 \cos\left(\frac{\pi}{x}\right) - 5 \sin x < 0 \\ x^3 + 3x - 5 \sin x \ge 0 \end{cases}$

- 1) a) Montrer que $\forall x < 0$ on a: $-x^2 5 \le f(x) \le x^2 5$
 - b) En déduire $\lim_{0^{-}} f(x)$; c) Montrer que f est continue en 0
 - d) Calculer $\lim_{\frac{\pi}{2}} f(1 \sin x)$
- 2) Montrer que f est continue sur $\mathbb R$
- 3) a) Vérifier que f est strictement croissante sur $[0, +\infty]$ en déduire f[1,2]
 - b) Montrer que l'équation f(x) = 0 admet une seule solution $\alpha \in]1,2[$ en déduire le signe de f(x) sur $[0, +\infty)$ puis que $\alpha = \frac{5}{3+\alpha^2}$

Exercice n ° 4 (3 points)

Mettre une croix devant la réponse exacte

- 1) Soit A e B deux points tels que : $\frac{Z_A}{Z_B} = 2 e^{i\frac{\pi}{3}}$ alors
- a) O, A et B sont alignés
- b) OAB est rectangle en O c) OAB est équilatéral
- 2) Soit f la fonction définie sur $[0, \frac{\pi}{2}]$ par $f(x) = 2x \cos x$ alors $f[0, \frac{\pi}{2}]$ est:
- a) $[-1, \pi]$ b) $[-1, 1+\pi]$ c) $[0, \pi]$
- 3) Soit les points M (z) et M' (z') tels que arg (z) $\equiv \frac{\pi}{2} + {\rm arg}$ (z') [2π] alors :
- a) O, M et M' sont alignés
- b) (OM) \perp (OM') c) O = M \star M'
- 4) Soit la suite (U_n) définie sur \mathbb{N} par : $U_n = \frac{3(-2)^n 1}{4(-2)^n + 2}$ alors
- $\lim_{+\infty} U_n$ égale à : a) $\frac{1}{2}$ b) $\frac{3}{4}$ c) n'admet pas de limite

