Exercice N 1 (6 pts)

1/ Soit h la fonction définie su]0; $+\infty$ [$par h(x) = xln(x^2) - 2x$

- a) Calculer : $\lim_{x\to 0^+} h(x)$
- b) Etudier les variations de h
- c) Montrer que l'équation h(x) = 0 admet une solution unique $\alpha \in]0$; $+\infty[$ et Vérifier que : $2,7 < \alpha < 2,8$
- d) Montrer que * $si \ 0 < x < \infty$ on a h(x) < 0* $si \ x > \infty$ on a h(x) > 0
- 2/ Soit f la fonction définie sur IR_+ par $f(x) = \begin{cases} x^2 \ln x \frac{3}{2} x^2 & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$

Soit (ζ_f) sa courbe représentative dans un plan rapporté à un repère orthonormé $R(O \ \vec{i} \ \vec{j})$

- a) Etudier la dérivabilité de f à droite en 0 . Interpréter graphiquement le résultat
- b) Montrer que $\forall x \in]0$; $+\infty[:f'(x) = h(x)$
- c) Dresser le tableau de variation de f
- d) Tracer (^{ζ_f})

Exercice N°2: (7 pts)

L'espace est rapporté à un repère orthonormé direct $(0,\vec{i} \quad \vec{j} \quad \vec{k})$ on considère les point A(0,1,2) , B(2,0,3) , C(-1,0,0) et I(1,2,1)

1) a/Calculer $\overrightarrow{AB} \wedge \overrightarrow{AC}$ et en déduire que A, B et C ne sont pas alignés.

b/ On désigne par P le plan (ABC). Montrer qu'une équation cartésienne de p est P: x+y-z+1=0

- 2) Soit (S)= { $M(x,y,z) \in \xi$; $tel\ que: x^2+y^2+z^2-2x-4y-2z+3=0$ } a/ Montrer que (S) est une sphère de centre le point I et déterminer son rayon b/ Montrer que le plan P est tangent à (S) en A. c/ Calculer le volume du tétraèdre IABC.
- 3) Soit H le milieu du segment [IA] et Q le plan passant par H et parallèle à P . a/ Montrer que le plan Q et la sphère (S) sont sécants suivant un cercle (C) . b/ Déterminer le centre et le rayon du cercle (C).

Soit f la fonction définie sur [-2,2] par $f(x) = \sqrt{4 - x^2}$

- 1) Montrer que f admet des primitives sur [-2,2].
- 2) Soit F la primitive de f sur [-2,2] qui s'annule en 0.

On pose $\forall x \in [-2, 2] \ H(x) = F(x) + F(-x)$.

- a) Montrer que H est dérivable sur [-2,2] et calculer H'(x).
- Montrer que $\forall x \in [-2, 2]$ ona H(x) = 0. b)
 - c) En déduire que F est impaire.

Exercice N 4:

(3 pts)

Cocher la réponse exacte aucune justification n'est demandé:

1) Soit $f(x) = \ln \frac{\pi}{4} - x^2$) l'ensemble de définition de f est :

a/ [-2,2]

b/]-2, 2[c/]0, $+\infty$ [

2) La fonction dérivée de f est égale

a/ f'(x) = $\frac{x}{4-x^2}$ b/ f'(x) = $\frac{2x}{4-x^2}$ c/ f'(x) = $\frac{2x}{x^2-4}$

3) Soit $f(x) = \frac{1}{x} + \frac{1}{x-1}$; $x \in]1$, $+\infty[$ est F une primitive de f sur]0, $+\infty[$ alors

 $a/F(x) = \ln(x^2 - x) + k$; $b/F(x) = -\frac{1}{x^2} - \frac{1}{(x-1)^2} + k$; $c/F(x) = \ln(\frac{x}{x-1}) + k$

4) $Ln(\sqrt{5}-2) + Ln(\sqrt{5}+2) =$

a/1

b/ 0 c/2