-Lycée : Elamel Fouchana

- Classes : 4éme T1+T2+T3

DEVOIR DE SYNTHÈSE

-Date: 07/03/2013

-Durée: 3h

Exercice n°1: (3points)

Cocher la réponse exacte en justifiant la réponse

- 1. $\lim_{x\to 1} \frac{\ln x}{x^2 3x + 2} =$

- 2. Si x est un réel de J-1, O[alors $ln(x^2+x) =$

 - a) lnx + ln(x+1) ; b) $lnx^2 + ln(x+1)$; c) ln(-x) + ln(x+1)
- 3. Si A,B, C et D sont quatre points de l'espace tels que $\overrightarrow{AB} \wedge \overrightarrow{CD} = \overrightarrow{AB} \wedge \overrightarrow{BD}$ alors :
 - a) (AB)//(CD)
- ; b) A, B et C sont alignés ; c) $(AB)\perp (BD)$
- 4. Si $(o; \vec{i}; \vec{j}; \vec{k})$ est un repère orthonormé direct de l'espace alors : $(\vec{i} \vec{j}) \wedge (\vec{i} + \vec{j}) =$
 - $a) \vec{k}$

- ; b) $2\vec{k}$; c) $-2\vec{k}$

Exercice n°2: (6points)

I/Soit g la fonction définie sur]0; $+\infty[$ par $g(x) = x^2 + 1 - lnx$

- 1. Dresser le tableau de variation de g
- 2. En déduire que $g(x) \ge 0$ pour tout $x \]0 ; +\infty[$

II/Soit f la fonction définie sur]0; $+\infty[$ par $f(x) = x+2 + \frac{\ln x}{x}$

- 1. a)Montrer que f est dérivable sur $]0; +\infty[$ et que $f'(x) = \frac{g(x)}{x^2}$
 - b) Dresser le tableau de variation de f
- 2. Soit (C) la courbe représentative de f dans un repère orthonormé (O, \vec{i}, \vec{j})
 - a)Montrer que Δ : y=x+2 est une asymptote à (C)
 - b) Etudier la position de (C) et Δ
- 3. a)Montrer que f réalise une bijection de $[0;+\infty]$ sur IR b)Calculer f(1). En déduire (f⁻¹)'(3)
- 4. Soit (C') la courbe représentative de f^{-1} dans (O,\vec{l},\vec{l})
 - a)Préciser les asymptotes de (C')
 - b)Tracer (C) et (C')

Exercice n°3: (6points)

Dans l'espace est rapporté à un repère orthonormé direct ; on considère les points A(0;1;0); B(1;0;-2); C(0;0;-1) et D(1;-1;0)

- 1. a)Déterminer les composantes du vecteur $\overrightarrow{AB} \wedge \overrightarrow{AC}$
 - b) En déduire une équation cartésienne du plan P passant par A,B et C

- 2. a)Montrer que ABCD est un tétraèdre
 - b) Calculer le volume de ABCD
- 3. a)Calculer l'aire du triangle ABCb) Vérifier que C est le projeté orthogonal de D sur le plan P
 - c)En déduire la distance du point D au plan P
- 4. Soit S l'ensemble des points M(x;y;z) tels que : $x^2+y^2+z^2-2x+2y-2=0$ a)Montrer que S est une sphère dont on précisera le centre et le rayon b)Montrer que P et S sont sécants suivant un cercle $\mathcal C$ dont on précisera le centre et le rayon

Exercice n • 4 : (5points)

f désigne une fonction dérivable sur IR et (C) sa courbe représentative dans un repère orthonormé (o,\vec{l},\vec{j})

- (\mathcal{C}) admet une branche infinie parabolique de direction (o,\vec{i})
- Le tableau de variation de f est le suivant

х	-∞	0		3	+∞
f'(x)	-	þ	+	Ò	+
f(x)	-1	-3-			+8

I/

- 1. Montrer que l'équation f(x) = 0 admet une solution α unique dans 0;3[
- 2. Donner suivant les valeurs de x, le signe de f(x)
- 3. Ecrire l'équation de la tangente T à (C)au point d'abscisse 3
- 4. Tracer (\mathcal{C}) (on prendra $\alpha=2$)

II/ Soit F la fonction définie par F(x) = ln(f(x))

- 1. Déterminer le domaine de définition de F
- 2. Déterminer $\lim_{x\to\alpha^+} F(x)$ et $\lim_{x\to+\infty} F(x)$
- 3. Montrer que (C_F) admet une branche infinie de direction (o, \vec{i})
- 4. Dresser le tableau de variation de F
- 5. Montrer que le point I(3,0) est un point d'inflexion pour (C_F)
- 6. Déterminer la primitive sur [3;+ ∞ [qui s'annule en 3 de la fonction g définie par : $g(x) = \frac{f(x) + f'(x)}{f(x)}$