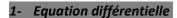
Rappel : Oscillation libre non Amorti

- ❖ L'élongation x est sinusoïdalepériodique.
- ❖ L'élongation x subie des oscillations sans diminution d'amplitude.
- Les caractéristiques d'oscillation.
 - ightharpoonup Fréquence propre : $N_0 = \frac{1}{2\pi} \sqrt{\frac{K}{m}}$.
 - $ightharpoonup Période propre : T_0 = 2 \pi \sqrt{\frac{m}{K}}$.
 - $ightharpoonup Pulsation propre : \mathbf{W}_o = \sqrt{\frac{\kappa}{m}}.$

Les oscillations forcées

- ❖ Le corps est soumis a une force excitatrice ou force moteur **F**.
- **F** est sinusoïdalepériodique en fonction du temps.



 \Leftrightarrow En applique la **RFD** : $\Sigma \overrightarrow{F}_{app} = m \overrightarrow{a}$

$$\vec{P} + \vec{T} + \vec{f} + \vec{F} + \vec{R} = m \vec{a}$$

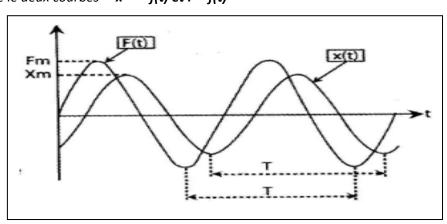
❖ Par projection sur (x x')

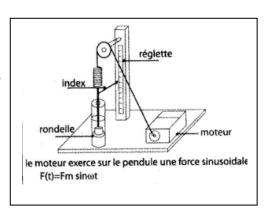
$$-Kx - hv + F = m a \implies m \frac{d^2x}{dt^2} + h \frac{dx}{dt} + Kx = F$$

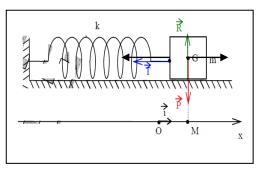
L'équation différentielle admet comme solution

$$x = x_m \sin(wt + \mathcal{E}_x)$$
 et $F(t) = F_m \sin(wt + \mathcal{E}_F)$

• On donne le deux courbes x = f(t) et F = f(t)



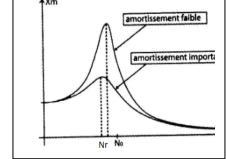




Influence de l'excitateur N sur l'amplitude

- \diamond On remarque expérimentalement que l'amplitude X_m varie en fonction de la fréquence N de l'excitateur.
- \star X_m augmente, atteint un maximum puis diminue
- \diamond Lorsque**N** = N_r , X_m et maximale, c'est la résonance d'élongation

$$N_r^2 = N_o^2 - \frac{h^2}{8 \pi^2 m^2}$$
: $N_r < N_0$.



3- Détermination de X_m et \mathcal{E}_x par la méthode de Fresnel

$$\underline{1^{er} cas:} w^2 < \frac{K}{m} = w_0^2 N < N_0$$

$$(\mathcal{E}_F - \mathcal{E}_x) \in [0; \frac{\pi}{2}[tg(\mathcal{E}_F - \mathcal{E}_x) > 0.$$

$$tg(\mathcal{E}_F - \mathcal{E}_x) = \frac{h \, N}{K - m \, w^2}$$

F est en avance de phase par rapport aX.

$$\underline{2^{\underline{eme}}}\underline{cas}: w^2 > \frac{K}{m} \Longrightarrow w > w_o \Longrightarrow N > N_o$$

$$(\mathcal{E}_F - \mathcal{E}_x) \in J^{\frac{\pi}{2}}; \pi [tg(\mathcal{E}_F - \mathcal{E}_x) < 0.$$

$$tg(\epsilon) = \frac{hw}{K - mw^2}$$

F est en avance de phase par rapport àX.

$$\underline{3}^{\underline{\underline{eme}}}$$
 cas: \underline{m} $\underline{w}^2 = K \Longrightarrow \underline{w} = \underline{w}_0 \Longrightarrow N = N_0$

$$\mathcal{E}_F - \mathcal{E}_x = \frac{\pi}{2} et \mathcal{E}_F > \mathcal{E}_x : X_m = \frac{Fm}{hw}.$$

F est en quadrature avance par rapportà x.

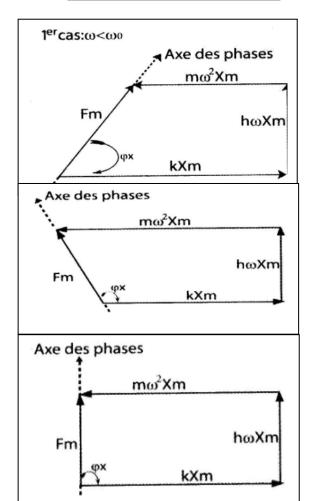
D'après Pythagore

$$(h X_m w)^2 + [K X_m - m w^2 X_m]^2 = Fm^2$$

Remarque

$$V_m = X_m w = \frac{Fm}{\sqrt{h^2 + (\frac{k}{w} - mw)^2}}$$

$$\mathcal{E}_{v} = \mathcal{E}_{x} + \frac{\pi}{2}$$
.



4- Détermination de N_r à la résonance d'élongation

- \diamond À la résonance d'élongation X_m est maximal.
- Pour que X_m est maximal il faut que f(w) soit minimal
- \Rightarrow avec: $f(w) = h^2 w^2 + (k mw^2)^2$

L'étude de f(w)

$$f'(w) = 2 w [h^2 - 2m (K - mw^2)]$$

$$f'(w) = 0$$
 $W_r = W_0^2 - \frac{h^2}{2m^2} N_r^2 = N_0^2 - \frac{h^2}{8\pi^2 m^2}$

W	0	Μ¹∞	
f'(w)	-		+
f(w)			→
X _m	_	•	*

5- L'amplitude X_m et le déphasage si h = 0

- ightharpoonup L'équation différentielle devient : $m \frac{d^2x}{dt^2} + Kx = F$
- > La construction de Fresnel

$$\underline{1}^{\underline{er}} \underline{cas} : m \ w^2 < K \Longrightarrow w < w_0 \Longrightarrow N < N_0$$

$$\mathcal{E}_F = \mathcal{E}_x \Longrightarrow F \text{ et } x \text{ sont en phaseFm} \quad m \text{ } w^2 X_m$$

$$X_m = \frac{Fm}{(K - mw^2)}$$



$$\underline{2^{\underline{ème}}}$$
 cas :m $w > K \Longrightarrow w > w_0 \Longrightarrow N > N_0$

 $\mathcal{E}_F = \mathcal{E}_x + \pi \Longrightarrow F$ et x sont en opposition de phase

$$X_m = \frac{Fm}{(mw^2 - K)}$$

à la resonance :
$$X_m \longrightarrow + \infty$$

$$\Rightarrow K - mw^2 0$$

$$\Rightarrow$$
ww_o \longrightarrow

$$\Rightarrow$$
 N \longrightarrow N

⇒ Rupture du ressort

6- Résonance de vitesse

a- L'équation différentielle

$$m\frac{dv}{dt}$$
+ hv + $K \int vdt = f$

$$V = V_m sin(wt + \mathcal{E}_v)$$

$$F = F_m sin (wt + \mathcal{E}_F)$$

b- La construction de Fresnel

$$\underline{1}^{\underline{er}} \underline{cas} : \frac{k}{w} < m \ w \Longrightarrow w_0 < w \Longrightarrow N > N_0$$

$$(\mathcal{E}_F - \mathcal{E}_v) \in [0; \frac{\pi}{2}[\implies tg(\mathcal{E}_F - \mathcal{E}_v) > 0]$$

$$tg(\mathcal{E}_F - \mathcal{E}_v) = \frac{m w - \frac{k}{w}}{h}$$

F est en avance de phase par rapport à v.

$$\underline{2^{\underline{eme}}}\underline{cas}: \frac{K}{w} > m \ w \Longrightarrow \ w_0 > w \Longrightarrow N < N_0$$

$$(\mathcal{E}_{F}-\mathcal{E}_{\nu})\in [-\frac{\pi}{2}; \ 0[\implies tg(\mathcal{E}_{F}-\mathcal{E}_{\nu})<0]$$

$$tg(\mathcal{E}_F - \mathcal{E}_v) = \frac{m w - \frac{k}{w}}{h}$$

F est retard de phase par rapport à v.

$$3^{\underline{\underline{eme}}}$$
 cas: $w = w_o \Longrightarrow N = N_o$

 $\mathcal{E}_F = \mathcal{E}_v \Longrightarrow F \text{ et } v \text{ sont en phase.}$

$$V_m = \frac{Fm}{h}$$

Pour les trois cas, et d'après Pythagore

$$V_m = \frac{Fm}{\sqrt{h^2 + (\frac{k}{m} - mw)^2}} : V_m \text{ varie avec N}$$

- \triangleright On donne la courbe qui donne $V_m = f(w)$.
- \triangleright A la résonance de vitesse l'amplitude V_m est maximale

$$\Rightarrow$$
à la résonance $V_m = \frac{Fm}{h}$ et $N = N_0$

Remarque:
$$X_m = \frac{Vm}{w} = \frac{Fm}{\sqrt{h^2 w^2 + (\frac{k}{m} - mw)^2}}$$

$$\mathcal{E}_{x} = \mathcal{E}_{v} - \frac{\pi}{2}$$
.

