Niveau : 4^{éme} sciences Technique

Prof: Daghsni Sahbi

I°) Rappels:

*Une réaction est dite <u>totale</u> si l'un au moins des réactifs (en défaut) disparait à la fin de la réaction . Dans ce cas , le réactif en défaut est appelé :<u>réactif limitant</u>.

II°) Tableau descriptif d'évolution d'un système :

1°) L'avancement d'une réaction , noté x est le nombre de fois que la réaction a marché depuis l'état initial. Pour la réaction : $a A + b B \rightarrow c C + d D$, le tableau descriptif d'évolution de ce système , ne renfermant initialement que les réactifs A et B s écrit :

Equation de la réaction		αA	+ bB -		→ cC	+	dЬ
Etat du système	avancement	Quantités de matière (mol)					
Initial	0	(n _A) ₀	(n _B) ₀		0	0	
Intermédiaire	×	(n _A) ₀ -ax	(n _B) ₀ -×		cx	dx	
final	× _f	$(n_A)_0$ -ax _f	(n _B) ₀ -× _f		c× _f	dx _f	

On désigne par : n_A , n_B , n_C et n_D respectivement les quantités de matière de A, B,C et D à un instant t,

l'avancement x est alors :x=
$$\frac{(n_A)_0 - n_A}{a} = \frac{(n_B)_0 - n_B}{b} = \frac{n_C}{c} = \frac{n_D}{d}$$

*Remarque: Si les constituants du système chimique constituent une seule phase et si la transformation se produit à volume V constant , on définit alors l'avancement volumique y comme suit : $y = \frac{x}{V} (mol.L^{-1})$

<u>2°) Avancement maximal</u>: c'est la valeur de l'avancement final si le système évolue jusqu' à la disparition totale du réactif limitant.

*Si x_{max} =xf \sim Réaction totale.

*Si xf≺ x_{max} <==> Réaction limitée.

III°) Esterification -- Hydrolyse :

1°) Définitions :

*Une estérification est une réaction entre un alcool et un acide .Elle conduit à un ester et de l'eau suivant le schéma : RCOOH + R'OH $RCOOR' + H_2O$

Acide Alcool Ester Eau

C'est une réaction lente, limitée et athermique.

* Une hydrolyse est une réaction entre un ester et de l'eau .Elle conduit à un acide et un alcool suivant le

schéma: RCOOR' + H2O RCOOH + R'OH

Ester Eau Acide Alcool

C'est une réaction lente, limitée et athermique.

^{*} une réaction est dite limitée si aucun des réactifs ne disparait à la fin de la réaction.

* L'estérification et l'hydrolyse sont deux transformations chimique l'une inverse de l'autre et elles se font simultanément et se limitent mutuellement.

2°) Taux d'avancement d'une réaction chimique :

Le taux d'avancement final d'une réaction noté au_f , d une réaction chimique est égal au quotient de son avancement final x_f par son avancement maximal x_{max}

$$\tau_f = \frac{avancement\ final}{avancement\ max\ imal} = \frac{x_f}{x_{max}}$$

Le taux d'avancement final est une grandeur sans dimension.

- *Pour une réaction totale ou pratiquement totale le taux d'avancement final est égal ou proche de l'unité.
- *Pour une réaction limitée le taux d'avancement final est inférieur à l'unité.
- * Un équilibre chimique est un équilibre dynamique. A l'échelle microscopique la réaction directe et la réaction inverse continuent à se produire mais leurs effets s'annulent mutuellement.

IV°) Loi d'action de masse -Conditions d'évolution spontanée :

1°) Fonction des concentrations -constante d'équilibre:

a°) cas de l'esterification :

* Soit la réaction :

on associe la fonction de s concentrations notée π et définie par : $\pi_{est}(t) = \frac{[ester]_t.[eau]_t}{[acide]_t.[alcool]_t}$.

A l'équilibre dynamique , la fonction π prend une valeur constante notée $k_{\it est}(ou\pi_{\it \acute{eq.dyn.}})$ appelée :

$$\text{constante d'équilibre } \text{relative à l'estérification.} \ K_{\textit{est}} = \pi_{\textit{\'eq.dyn.}} = \frac{[\textit{ester}]_{\textit{\'eq}}.[\textit{eau}]_{\textit{\'eq}}}{[\textit{acide}]_{\textit{\'eq}}.[\textit{alcool}]_{\textit{\'eq}}}$$

b°) Cas de l'hydrolyse :

*Soit la réaction :

on associe la fonction des concentrations notée π et définie par $K_{hyd.}(\pi_{\acute{e}q.dyn})$ appelée constante d'équilibre

$$\text{relative à l' hydrolyse.} \ K_{\textit{hyd}} = \pi_{\textit{\'eq.dyn.}} = \frac{[\textit{acide}]_{\textit{\'eq.}}[\textit{alcool}]_{\textit{\'eq}}}{[\textit{ester}]_{\textit{\'eq.}}[\textit{eau}]_{\textit{\'eq}}}$$

2°) Enoncé de la Loi d'action de masse :

<u>a°) Enoncé</u>: Pour un système chimique en équilibre la fonction des concentrations π prend une valeur constante appelée constante d'équilibre et notée K, qui ne dépend que de la température : c'est la loi d'action de masse.

b°) Généralisation :

Pour l'équation chimique :

$$aA + bB \xrightarrow{(1)} cC + dD$$

avec a,b,c et d sont les coefficients stæchiométriques , on associe la fonction des concentrations notée π et définie par :

$$\pi (t) = \frac{\begin{bmatrix} C \end{bmatrix}_t^c \cdot \begin{bmatrix} D \end{bmatrix}_t^d}{\begin{bmatrix} A \end{bmatrix}_t^a \cdot \begin{bmatrix} B \end{bmatrix}_t^b}$$

notée **K(ou** $\pi_{\acute{e}q.dyn}$) appelée : constante d 'équilibre .

définie par :
$$\begin{pmatrix} \pi & (t) = \frac{\begin{bmatrix} C & \end{bmatrix}_t^c \cdot \begin{bmatrix} D & \end{bmatrix}_t^d}{\begin{bmatrix} A & \end{bmatrix}_t^a \cdot \begin{bmatrix} B & \end{bmatrix}_t^b} \\ \begin{bmatrix} A & \end{bmatrix}_t^a \cdot \begin{bmatrix} B & \end{bmatrix}_t^b \\ \end{bmatrix}$$
A l'équilibre dynamique , la fonction π prend une valeur constante notée **K(ou** π , appelée : constante d'équilibre .

Rappel du cours : Equilibre chimique

3°) Conditions d'évolution spontanée :

- *Si $\pi \prec K$, la réaction directe (1) est possible spontanément.
- *Si $\pi \succ K$, la réaction inverse (2) est possible spontanément.
- *Si $\pi=K$, on n'observe ni la réaction directe ni la réaction inverse :La composition du système ne varie plus , on dit que le système a atteint <u>un état d'équilibre</u>.

V°) Loi de modération :

Les variables pouvant perturber un système en équilibre dynamique, appelés : facteurs d'équilibre :

1°) La molarité d'un constituant :

- *Si une perturbation tend , à température constante , à augmenter une molarité dans un système initialement en équilibre dynamique , le système répond par la transformation qui tend à diminuer cette molarité.
- *Si une perturbation tend , à température constante , à diminuer une molarité dans un système initialement en équilibre dynamique , le système répond par la transformation qui tend à augmenter cette molarité.

 Dans les deux cas , la réponse du système tend à <u>modérer</u> (c'est -à-dire réduire) la variation de molarité provoquée par la perturbation à température constante.

2°) La température :

- *Si une perturbation tend , <u>sous pression constante</u> , <u>à élever la température</u> d'un système fermé initialement <u>en équilibre dynamique</u> , ce système subit la transformation <u>endothermique</u> . c'est -à-dire qui **tend à abaisser la température**.
- *Si une perturbation tend , <u>sous pression constante</u> , <u>à abaisser la température</u> d'un système fermé initialement <u>en équilibre dynamique</u> , ce système subit la transformation <u>exothermique</u>. c'est à dire qui tend à élever la température.

Dans les deux cas , la réponse du système tend à modérer (c'est -à-dire) la variation de la température provoquée par la perturbation à pression constante.

3°) La pression:

- *Si une perturbation tend, à température constante, à augmenter la pression d'un système fermé initialement en équilibre dynamique, ce système subit la réaction qui tend à diminuer la pression (c'est -à-dire qui diminue n_g).
- * Si une perturbation tend , $\frac{\grave{a}}{}$ température constante , $\frac{\grave{a}}{}$ diminuer la pression d'un système fermé initialement en équilibre dynamique , ce système subit la réaction qui $\frac{1}{}$ tend $\frac{\grave{a}}{}$ augmenter la pression (c'est - \hat{a} -dire qui augmente n_a).

Dans les deux cas , la réponse du système $\underline{\text{tend à modérer}}$ (c'est -à-dire réduire) la variation de la pression provoquée par la perturbation $\underline{\text{à température constante}}$.

