Résumé de cours

• <u>L</u>'

<u>Energie</u> de l'atome est <u>quantifiée</u> : Elle ne peut prendre que certaines valeurs particulières E_n appelées niveaux d'énergies.

ullet Aspect corpusculaire de la lumière : Toute radiation lumineuse de fréquence ${\cal V}$ est un flux de photons .

Le photon est une particule, sans masse et sans charge d'énergie $W_{ph}=h.\mathcal{V}=h.\mathcal{L}$

Cette énergie peut être absorbée suite à un choc avec un photon (d'énergie $W_{ph}=E_p$ - E_n exactement)

ou avec un électron (d'énergie cinétique $E_C \geq E_p$ - E_n)

 $\underline{L'ionisation}$ de l'atome est une transition de l'état fondamental E_I à l'état ionisé E_∞ = 0 $E_i=E_\infty$ - $E_I=-E_I$ est l'énergie d'ionisation de l'atome.

L'absorption d'un photon ($W_{ph}=h.V \geq E_i$) ionise l'atome de E_1 à E_∞ et éjecte l'électron Avec une énergie cinétique $E_C=W_{ph}$ - E_i

- <u>Le</u> spectre d'emission d'un élément est l'ensemble des radiation émises par les atomes de cet élement .
- <u>Le</u> spectre d'absorption d'un élement chimique est le spectre continu de la lumiére blanche privé des radiation absorbées par les atomes de cet élement
- <u>Les</u> radiation absorbées donnent des raies noires dans le spectre d'absorption.
- <u>Les</u> radiation émises donnent des rais colorées dans le spectre d'emission .

Les spectres d'absorption et d'émission sont intrinsèques à l'élément chimique correspondant

- Pour l'atome $H: E_n=-rac{E_0}{n^2}$ avec $E_0=13.6$ eV et n= entier ≥ 1 (1 eV= $1.6.10^{-19}$ j)

 Le spectre d'émission de l'élément H est formé de 3 séries de rais : la série de l'ultra violet (de E_n à E_1)
 - \checkmark la série de l'ultra violet ($de E_n \grave{a} E_1$)
 - 🗸 la série du visible ($de\ E_n\ \grave{a}\ E_2)$
 - 🗸 la série de l'infrarouge ($de\ E_n\ \grave{a}\ E_3\ ou\ \grave{a}\ E_4\ ou\ \grave{a}\ E_5)$