

Analogie entre les oscillations électriques et les oscillations mécaniques

Oscillateur		Electrique : Circuit RLC	Mécanique : Pendule élastique
	Coefficient d'inertie	Inductance L (enH)	Masse m (en kg)
Grandeurs caractéristiques	Coefficient de rappel	Inverse de la capacité	Raideur k (en N. m ⁻¹)
	Facteur dissipatif	Résistance R(en Ω)	Coefficient de frottement h
		$R = R_o + r$	(en kg. s ⁻¹)
Grandeurs oscillantes		Charge électrique q (en C)	Elongation x (en m)
		Intensité $\mathbf{i} = \frac{dq}{dt}$ (en A)	Vitesse $V = \frac{dx}{dt}$ (en m. s ⁻¹)

Oscillations libres

			On charge le condensateur	On écarte le solide de sa position d'équilibre et on le lâche sans vitesse initiale
Excitation			On déplace un aimant devant la bobine (condensateur déchargé)	On lance le so <mark>lid</mark> e à partir de sa position d'équilibre avec une vitesse initiale
Equation différentielle des oscillations	Amorties		$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = 0$	$m\frac{d^2x}{dt^2} + h\frac{dx}{dt} + k x = 0$
	Non amorties		$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{c}q = 0$ $\frac{d^2q}{dt^2} + \frac{1}{LC}q = 0 \text{ ou}$ $\frac{d^2q}{dt^2} + w_0^2 q = 0 \text{ avec}$	$m\frac{d^2x}{dt^2} + h\frac{dx}{dt} + k x = 0$ $\frac{d^2x}{dt^2} + \frac{k}{m}x = 0 \text{ ou}$ $\frac{d^2x}{dt^2} + w_0^2 x = 0 \text{ avec}$
			$w_o = \frac{1}{\sqrt{LC}}$	$w_o = \sqrt{\frac{k}{m}}$
	Forme et expression		- électrique $E_e = \frac{1}{2c} q^2$	-potentielle élastique $E_p = \frac{1}{2} k x^2$
Energie de l'oscillateur			- magnétique $E_L = \frac{1}{2} L i^2$	- cinétique $E_c = \frac{1}{2} m v^2$
			- électromagnétique :	- mécanique :
			$E = \frac{1}{2C} q^2 + \frac{1}{2} L i^2$	$E = \frac{1}{2} k x^2 + \frac{1}{2} m v^2$
	Variation	Amorties	$\frac{dE}{dt}$ = - R. i ² donc E décroit	$\frac{dE}{dt}$ = - h. v^2 donc E décroit
		Non amorties	R = 0 donc E = constante	h = 0 donc E = constante
			$E = \frac{1}{2C} Q_{m}^{2} = \frac{1}{2} L I_{m}^{2}$	$E = \frac{1}{2} k X_{m}^{2} = \frac{1}{2} m V_{m}^{2}$

Oscillations forcées en régime sinusoïdal

Excitateur	GBF délivrant une tension u =U _m sin (wt + &u)	Moteur exerçant une force $F = F_m \sin(w t + \ell_F)$
Equation différentielle des oscillations	$L\frac{d^2q}{dt^2} + R_t\frac{dq}{dt} + \frac{1}{C}q = u$	$m\frac{d^2x}{dt^2} + h\frac{dx}{dt} + kx = F$
Amplitude	Des intensités $I_{m} = \frac{Um}{\sqrt{Rt^{2} + (Lw - \frac{1}{cw})^{2}}}$	Des vitesses $V_{m} = \frac{Fm}{\sqrt{h^{2} + (mw - \frac{k}{w})^{2}}}$
	Des charges $Q_{m} = \frac{Um}{\sqrt{(R.w)^{2} + (Lw^{2} - \frac{1}{c})^{2}}} = \frac{Im}{w}$	Des élongations $X_{m} = \frac{Fm}{\sqrt{(hw)^{2} + (mw^{2} - k)^{2}}} = \frac{Vm}{w}$
	0 < ℓu -ℓq < π ou 0 < ℓu -ℓu _c < π -π/2 < ℓu -ℓi < π/2	$0 < \ell_F - \ell x < \pi$ $-\pi/2 < \ell_F - \ell v < \pi/2$
Déphasage	$eu_{c} < eu < eu_{L}$ $tg (eu - ei) = \frac{Lw - 1/CW}{R}$ $tg (eu - e_{q}) = \frac{RW}{\frac{1}{C} - LW^{2}}$	$\mathbf{e}_{f} < \mathbf{e}_{F} < \mathbf{e}_{T}$ $tg(\mathbf{e}_{F} - \mathbf{e}_{V}) = \frac{mw - k/w}{h}$ $tg(\mathbf{e}_{F} - \mathbf{e}_{X}) = \frac{h w}{k - m w^{2}}$
Impédance	$Z = \frac{Um}{Im} \text{ en } \Omega$ $Z = \sqrt{R^2 + (Lw - \frac{1}{cw})^2}$	$Z = \frac{Fm}{Vm} \text{en kg.s-}^{1}$ $Z = \sqrt{h^2 + (mw - \frac{\kappa}{w})^2}$

Mme COSSENTINI Lycée pilote de l'Ariana

Mme COSSENTINI		Lycee pilote de l'Ariana
	Des intensités : $N = N_0$ $U_m = R I_m, u = u_R, u_L(t) = -u_c(t)$ $Z = R, \ell u - \ell i = 0$ $Cos (\ell u - \ell i) = 1$ $\ell u - \ell u_c = \pi/2 \text{ rad}$ $\ell u - \ell u_L = -\pi/2 \text{ rad}$	Des vitesses: $N = N_0$ $F_m = f_m.=h \ V_m , \ F(t) = -f(t)$ $Z = h , \ \ell_F - \ell_V = 0$ $Cos \ (\ell_F - \ell_V) = 1$ $\ell_F - \ell_X = \pi/2 \ rad$ $\ell_F - \ell_f = \pi \ rad$ $\ell_F - \ell_T = -\pi/2 \ rad$
Condition de résonance	U_{m} $R I_{m}$ Des charges : $N_{r} = \sqrt{N0^{2} - \frac{R^{2}}{8\pi^{2}L^{2}}} < N_{0}$	$F_{m} \qquad k \ X_{m} \qquad h \ w \ X_{m}$ $Des \'elongations:$ $N_{r} = \sqrt{N0^{2} - \frac{h^{2}}{8\pi^{2}m^{2}}} < N_{0}$
	Pour R < $\sqrt{2\frac{L}{c}}$ = R _i Si R > R _i la réponse est linéaire (Résonance impossible)	Pour h $< \sqrt{2mk} = h_1$ Si h > h ₁ la réponse est linéaire (Résonance impossible)
Courbes de déphasages	$\begin{array}{c c} \pi/2 & \\ \hline 0 & N_0 & N \\ \hline -\pi/2 & \\ \hline \pi & \\ \pi/2 & \\ \hline \end{array}$	$\pi/2$ N_0 $\pi/2$ $\pi/2$ π $\pi/2$
Résonance	Des intensités Im Um/R R (faible)	Des vitesses V _m F _m /h h (faible)
Courbes de résonance	R (élevée) No N	Des élongations X m
	R= 0(cas idéal) R (faible) R (élevée)	h = 0(cas idéal) h (faible) h (élevé)
Facteur de qualité Q (à la résonance)	$Q = \frac{Ucm}{Um} = \frac{1}{R} \sqrt{\frac{L}{c}}$	$Q = \frac{Tm}{Fm} = \frac{1}{h} \sqrt{mk}$
Puissance moyenne facteur de puissance	$P = U.I. \cos (\ell u - \ell i) = R I^{2}$ $\cos (\ell u - \ell i) = \frac{R}{Z}$	$P = F.V. \cos (\ell_F - \ell_V) = h v^2$ $\cos (\ell_F - \ell_V) = \frac{h}{Z}$