

Chimie: (7 points)

Exercice N°1

Lors d'une séance de travaux pratique, on étudié la cinétique chimique d'une réaction chimique totale entre les ions iodures I^- et les ions peroxodisulfate $S_2O_8^{2-}$. La réaction est modélisée par l'équation suivante: $2I^- + S_2O_8^{2-} \longrightarrow I_2 + 2 SO_4^{2-}$

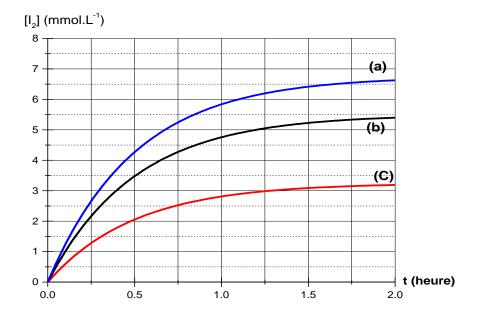
Pour cela on mélange, un volume V_1 d'une solution d'iodure de potassium KI de concentration C_1 avec un volume V_2 d'une solution peroxodisulfate de potassium $K_2S_2O_8$ de concentration C_2 , à un instant pris comme origine de temps.

Ce mélange est partagé en dix prélèvements de volume $V_P=10ml$. Par dosage successive des prélèvements par une solution de thiosulfate $S_2O_3^{2-}$ de concentration $C_0=0.1mol$. La réaction est modélisée par l'équation suivante :

$$I_2 + 2S_2O_3^{2-} \longrightarrow 2I^- + S_4O_6^{2-}$$

On a pu de tracer la courbe de volume versé à l'équivalence de la solution qui contient les ions thiosulfate $S_2O_3^{2-}$ en fonction du temps ; $V_0=f(t)$ figure 1 de la page 5.

- 1) Dresser le tableau descriptif d'évolution de la réaction entre ions iodures I⁻ et les ions peroxodisulfate S₂O₈²⁻.
- 2) a-Montrer que l'avancement de la réaction $x = 5C_0V_0$.
 - b- Déterminer l'avancement de la réaction x_f.
- 3) a- Déterminer la quantité initiale des ions iodures I^- ; $n_0(I^-)$ et les ions peroxodisulfate $S_2O_8^{2-}$; $n_0(S_2O_8^{2-})$ pour que le mélange soit en proportion stœchiométrique.
 - b- Exprimer la concentration des ions iodure initiale dans le mélange [I⁻]₀ en fonction de concentration des ions iodure finale [I⁻]_f.
 - c- Calculer alors C₁ et C₂ sachant que V₂=4V₁
- 4) a- Exprimer la vitesse instantanée de la réaction en fonction de C₀ et V₀.
 - b- Calculer la vitesse maximale de cette réaction.


Exercice N°2

On veut étudier la cinétique d'une réaction lente et totale entre les ions iodures I⁻ et le peroxyde d'hydrogène H₂O₂ en milieu acide. La concentration de diiode I₂ est déterminée expérimentalement par spectrophotométrie. Pour cela, on utilise trois mélanges préparés de la façon suivante:

	Acide sulfurique (1 M)	Solution de KI(0,1 M)	Eau oxygénée (0,1 M)
Mélange (1)	10 mL	10 mL	2 mL
Mélange (2)	10 mL	18 mL	2 mL
Mélange (3)	10 mL	10 mL	1 mL

Les courbes suivantes donnent les concentrations en diiode formé en milli mole par litre, en fonction du temps:

- 1- Sachant que l'équation de la réaction étudiée est: $H_2O_2 + 2 I^- + 2 H_3O^+ \rightarrow I_2 + 2 H_2O$ Préciser le rôle de l'acide sulfurique ajouté à chaque mélange.
- 2- Remplir le tableau de la page 4.
- 3- Attribuer chaque courbe à chaque mélange en justifiant la réponse.
- 4- Les réactions se sont-elles terminées dans les trois mélanges?

Physique: (13 points)

Exercice N°1:

On considère le montage du circuit électrique schématisé par la figure-3- de la feuille annexe

- Quatre dipôles D₁, D₂. D₃ et D₄. (Chaque dipôle peut être soit un condensateur de capacité Cou un résistor de résistance Ri
- Un générateur de tension idéal de tension de fem E.
- Un générateur de courant.
- Quatre voltmètres numériques V₁; V₂, V₃ et V₄
- Un milliampèremètre (mA)...
- Deux interrupteurs K₁ et K₂

Les deux voies Y₁ et Y₂ représentent les entrées d'un oscilloscope bi courbe.

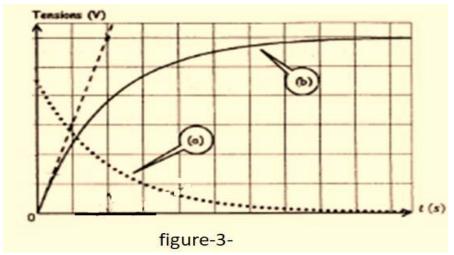
Partie A:

On ferme K_1 et on garde K_2 ouvert

Pour identifier la nature exacte de ces deux dipôles électriques D_1 et D_2 on les branches en série avec un générateur de courant débitant un courant d'intensité constante I=2mA.

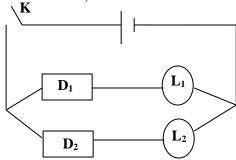
A la fermeture du circuit étant prise comme origine du temps, le voltmètre (V_2) branché aux bornes du dipôle D_2 indique une valeur constante 16 Valors que (V_1) indique une valeur nulle.

- 1) a- Justifier que le dipôle D₂ est un dipôle résistor
- b- En déduire la valeur de la résistance R₂ du dipôle D₂
- c- Montrer que le dipôle électrique D₁ est un condensateur. Préciser son état de charge.
- 2) Apres une durée de temps Δt =16 s de la réalisation de cette phase de charge, les deux voltmètres (V_1 et V_2 indiquent la même valeur. Montrer que l'expression de la capacité C est donnée par : $C = \Delta t / R_2$. La calculer.


Partie B:

On décharge totalement le condensateur. A l'instant de date t_o =0s pris comme origine du temps, on ferme K_2 et on garde K_1 ouvert. Dés qu'on ferme K_2 ouvert l'ampèremètre indique une intensité I_0 =2,4 mA

Apres une durée $\Delta t=50$ s, le condensateur est totalement chargé et le voltmètre (V_1) indique une tension $U_1=12V$. Alors Les deux voltmètres V_3 et V_4 indiquent la même tension nulle.

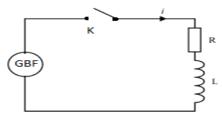

- 1) a- Quelle est l'indication de l'ampèremètre après la durée Δt ? Justifier.
- b-Préciser, en le justifiant, la nature exacte des deux dipôles D3 et D4
- 2)-Indiquer sur le schéma du circuit qui convient, les signes des charges électriques portées par les deux armatures A et B du condensateur, le sens du déplacement des électrons.
- 3) a- Etablir l'équation différentielle régissant les variations de la tension u_c aux bornes du condensateur b- Vérifier que la tension u_c (t)= $E(1-e^{-t/\tau})$ est une solution de l'équation différentielle en précisant l'expression de la constante de temps τ en fonction des grandeurs caractéristiques des dipôles D_1 , D_3 et D_4 .
- 4) a- Quelle est la grandeur électrique visualisée sur chaque voie de l'oscilloscope.
- b- Attribuer, en le justifiant, a chaque tension la courbe correspondante parmi les deux courbes (a) et (b) de la figure ci-dessous.

- 5) A partir des résultats expérimentaux, Déterminer
- a- La valeur de la fem E du générateur et préciser la sensibilité verticale de l'oscilloscope.
- b- La valeur de la constante de temps τ du dipôle RC et préciser la sensibilité horizontale
- c- La valeur de la tension initiale aux bornes du dipôle D₃
- d-Les valeurs des grandeurs caractéristiques des dipôles D₃ et D₄.

Exercice $N^{\circ}2$:

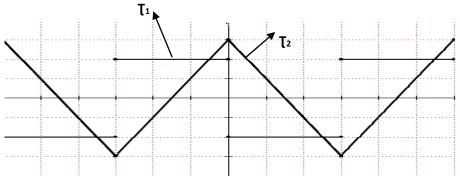
I/On considère le circuit suivant formé par un générateur, deux lampes identiques (L_1, L_2) , deux dipôles (D_1,D_2) et un interrupteur k comme indique la figure suivante :(les deux dipôles (D_1,D_2) peuvent être un condensateur ou une bobine ou un résistor)

Lorsqu'on ferme l'interrupteur k, on remarque que la lampe L_2 s'allume après un retard du temps par rapport à L_1 .


Après quelques secondes on constate que la lampe L₁ est éteinte.

- 1- Préciser en le justifiant la nature de chaque dipôle.
- 2- Déduire le rôle de chaque dipôle lorsque le régime permanant s'établit

3- Si les deux dipôles (D_1,D_2) sont deux bobines de résistances internes respectives r_1 et r_2 . Au régime permanant la lampe L_1 brille plus intense que L_2 . Comparer r_1 et r_2 .


II/ Pour déterminer l'inductance L d'une bobine, on réalise un circuit qui comporte en série un conducteur ohmique de résistance $R=2K\Omega$, une bobine d'inductance L et de résistance négligeable et un interrupteur K. L'ensemble est alimenté par un GBF délivrant une tension périodique triangulaire de fréquence N.

On ferme l'interrupteur K et on visualise à l'aide d'un oscilloscope la tension u_R au bornes du résistor sur la voie Y_1 et la tension u_L de la tension aux bornes de la bobine sur la voie (Y_2 +inversion). On obtient les oscillogrammes de la figure ci-dessous

Les sensibilités de l'oscilloscope sont :

- Sensibilité verticale : voie Y₁: 1V.div⁻¹; voie Y₂: 0,1V.div⁻¹
- Sensibilité horizontale **1ms.div**⁻¹

1/a- La touche inversion de la voie Y , est activée. Justifier cette opération.

b- Déterminer la valeur de la fréquence N du GBF.

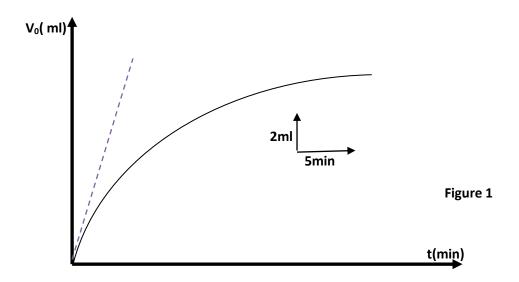
2/ a- Préciser, en justifiant, le nom du phénomène qui se manifeste au niveau de la bobine.

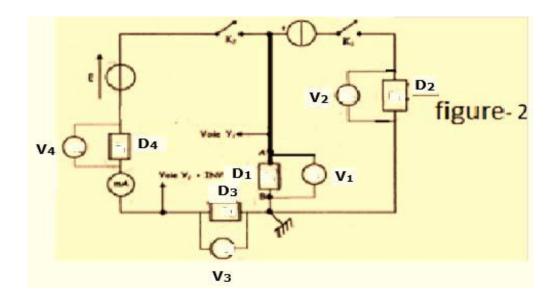
b- Montrer que $u_L=(L/R).du_R/dt$.

3/a- Déterminer la valeur de du_R/dt pendant l'intervalle de temps [0, T/2].

b- En déduire la valeur de **L**.

4/ On modifie la valeur de la fréquence du GBF, on constate que la valeur absolue de la tension aux bornes de la bobine $|\mathbf{u}_L|$ augmente.


Préciser, en justifiant, si la modification de la fréquence est une augmentation ou une diminution.


Feuille à rendre avec la copie

Nom:

.....prénom :.....

	[H ₂ O ₂] initiale	[l ⁻] initiale	Réactif limitant
Mélange (1)			
Mélange (2)			
Mélange (3)			

