Lycée Erromana Kalaa sghira	Devoir de synthèse N°1 Sciences physiques	Année scolaire 2013/2014
Prof : Amara Moncef		Durée : 3 heures
	Vendredi 06/12/2013	

Chimie (7 points)

Exercice N°1 (4,5 points)

Dans une enceinte de volume V = 4 litres, on introduit à la température $T_1 = 700$ °C, un mélange gazeux d'une mole de monoxyde de carbone CO, deux moles de dichlore Cl_2 et 0,5 mole de dichlorure de méthanoyle (phosgène) $COCl_2$ qui aboutit à un état d'équilibre modélisé par l'équation :

(1)
$$CO_{(gaz)} + Cl_{2(gaz)} <===> COCl_{2}(_{gaz)}$$
 (-1)

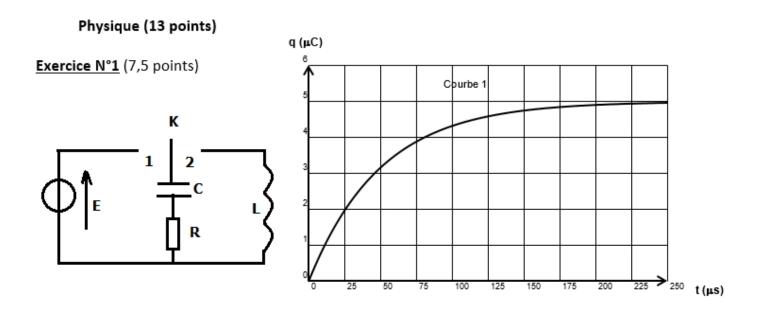
- 1) Sachant qu'a la température T_1 , la constante d'équilibre est $K_1 = 32,5$
- a) Calculer la valeur de la fonction de concentration initiale π_0 et dire dans quel sens évolue spontanément la réaction
 - b) Dresser le tableau d'avancement de la réaction
 - c) Déterminer en mole la composition finale du mélange gazeux
- 2) Sans modifier la pression, on reprend le mélange initial précédent à une température T_2 = 900°C, le système chimique abouti à un nouveau état d'équilibre de constante K_2 < 1 ou le nombre de mole total gazeux est n = 3,67 mol a)Calculer la constante d'équilibre K_2
- b) Quelle est la nature énergétique (Exothermique, endothermique ou athermique) de la réaction de synthèse du phosgène ? Justifier
- 3) A la température de 700°C, lorsque le système chimique atteint son état d'équilibre, on réalise une augmentation de la pression
- a) Dire en le justifiant dans quel sens l'équilibre sera déplacé?
- b) Dans quelles conditions de température et de pression doit-on opérer pour améliorer le taux d'avancement final de la réaction de synthèse du phosgène

Exercice N°2 (2,5 points)

Texte documentaire

En 1867 Guldberg et Waage ont énoncés explicitement la loi d'action de masse (appelée parfois la loi de l'équilibre chimique) sous la forme suivante : « la vitesse d'une réaction chimique est proportionnelle au produit des **masses actives** des substances régissantes.». L'expression fut alors comprise dans le sens de concentration et exprimée en moles par litre. En appliquant cette loi aux systèmes homogènes (systèmes dans lesquels les réactifs sont présents dans une seule phase par exemple en solutions) on arrive à une expression des conditions de l'équilibre pour une réaction réversible. Considérons une réaction réversible simple à température constante :

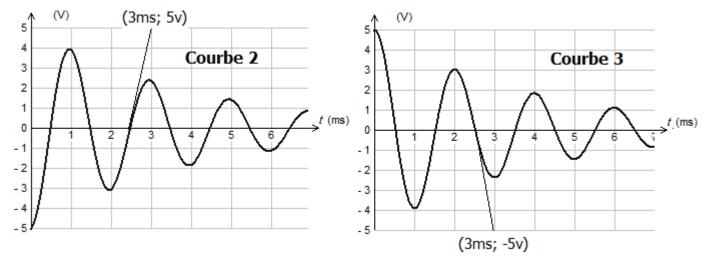
$$\alpha(A) + \beta(B) <==> \gamma(C) + \delta(D)$$


La vitesse de la réaction dans le sens direct est proportionnelle au produit des deux concentrations de A et B, soit : $v_1=k_1$ [A] $^{\alpha}$.[B] $^{\beta}$, de même la vitesse de réaction dans le sens inverse est donnée par

D'après : analyse chimique quantitative de Vogel (page-13-) ; édition de Boeck

- 1) Enoncer la loi d'action de masse d'après Guldberg et Waage.
- 2) Quelle est la signification de l'expression masse active ?
- 3) Relever du texte une phrase qui démontre que l'équilibre est dynamique.
- 4) Que représente le rapport.
- 5) Déterminer la constante d'équilibre suivant par application de la loi d'action de masse de Guldberg et Waage :

$$N_{2(g)} + 3 H_{2(g)} <===> 2 NH_{3(g)}$$


On donne : $1\mu(\text{micro}) = 10^{-6} \text{ et } 1\text{m(milli)} = 10^{-3}$

On réalise le montage de la figure ci-contre formé par :

- ✓ Un générateur de tension idéal de fem E = 5 volts
- ✓ Un condensateur de capacité C= 1 µF initialement neutre
- ✓ Une bobine d'inductance L et de résistance interne nulle
- ✓ Un résistor de résistance R
- ✓ Un interrupteur K
- I) On place l'interrupteur K en position (1)
- 1) Quel est le phénomène physique étudié
- 2) Etablir l'équation différentielle du circuit en fonction de q charge du condensateur et
- 3) La courbe (1) de la page-2-, donne les variations de la charge q en fonction du temps
- a) La solution de l'équation différentielle précédente est $q = A + B.exp(-\alpha t)$. Déterminer les constantes A, B et α en fonction de R, C et E
 - b) Déterminer par la méthode de la tangente à l'origine la constante de temps τ du circuit
 - c) En déduire la résistance R
- 4) Déterminer graphiquement l'intensité de courant pour les dates $t_0 = 0$ µs et $t_1 = 25$ µs
- II) A une date prise comme origine des temps lorsque le condensateur est complétement chargé, on bascule l'interrupteur K en position (2) et on branche le circuit à un oscilloscope à mémoire afin

de visualiser la tension de la bobine sur la voie(1) et la tension du condensateur sur la voie (2).

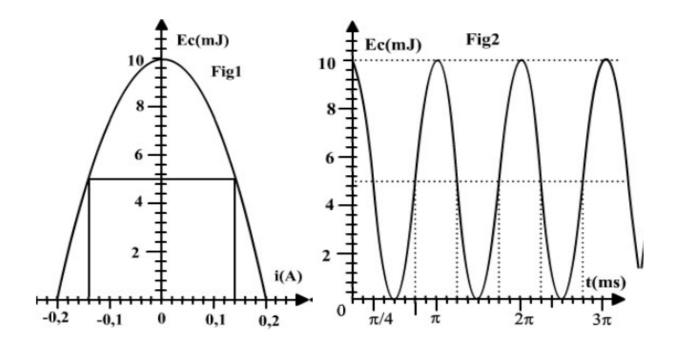
- 1-a) Faire le branchement entre l'oscilloscope et le circuit
- b) Sur l'écran on observe les deux oscillogrammes (2) et (3) suivants. Identifier en le justifiant chaque courbe

- c) Quelle est la nature des oscillations obtenues ? Justifier la réponse.
- 2-a) Déterminer graphiquement la pseudopériode T des oscillations
 - b) En admettant que la pseudopériode est sensiblement égale à la période propre
- $T_0 = 2\pi$. Calculer la valeur de l'inductance L de la bobine
- 3-a) Montrer que l'équation différentielle des oscillations du circuit peut s'écrire sous la forme : +
- + $u_L = 0$ ou u_L est la tension au bornes de la bobine
- b) On pose λ = , identifier l'unité de la constante λ , comment peut-on nommer son inverse ?
- c) Sachant que la pulsation du circuit est $\omega = \text{ ou } \omega_0^2 = \text{ pulsation propre des oscillations électriques libres non amorties. Calculer <math>\omega$, ω_0 et conclure
- 4-a) Calculer l'énergie électromagnétique totale E₀ du circuit à la date t₀= 0 ms
 - b) Calculer l'énergie électromagnétique totale E₁ du circuit à la date t₁= 2,5 ms
 - c) Comparer E₀ à E₁ et conclure

Exercice N°2 (5,5 points)

On réalise un circuit série à l'aide d'un condensateur de capacité C **initialement chargé** et d'une bobine d'inductance L et de résistance pratiquement nulle. A un instant de date t, la tension aux bornes du condensateur a pour expression : $\mathbf{u}_{C}(t) = \mathbf{U}_{Cm} \cos(\omega_0 t)$.

- 1) a) Montrer que $u_C(t) = U_{Cm} \cos(\omega_0 t)$ est une solution de l'équation différentielle du circuit $u_C = 0$ si $\omega_0 = 0$)
- **b)** Montrer que l'intensité i du courant dans le circuit oscillant **LC** peut s'écrire sous la forme suivante :


$$i(t) = U_{m,C}$$
). $sin(\omega_0 t + \pi)$

- c) Montrer que) s'exprime en ohm (Ω)
- **2-a)** Sachant que l'énergie électrique initialement emmagasinée dans le condensateur se conserve, au cours du temps dans le circuit, établir l'équation différentielle qui régit l'intensité instantanée i du courant électrique qui circule dans le circuit.
- **b)** Montrer que l'énergie électrostatique $\mathbf{E}_{\mathbf{C}}$ emmagasinée par le condensateur est :

$$E_C = 1/2 (CU_{Cm}^2 - Li^2).$$

- 3) On donne les variations de l'énergie électrostatique $\mathbf{E}_{\mathbf{C}}$ emmagasinée dans le condensateur en fonction de l'intensité i (figure-1) et en fonction du temps (figure-2).
- a) Déduire des deux graphes :

- ✓ La valeur maximale Ecm de Ec;
- ✓ La valeur maximale **Im** de **i**;
- \checkmark La valeur de la période propre T_0 de l'oscillateur.
- b) Déduire la valeur de ω_0 , L, C et U_{Cm} .
 4) Déterminer graphiquement les valeurs de i et de t pour lesquelles $E_L = E_C$.

Chimie (7 points)

Exercice N°1 (4,5 points)

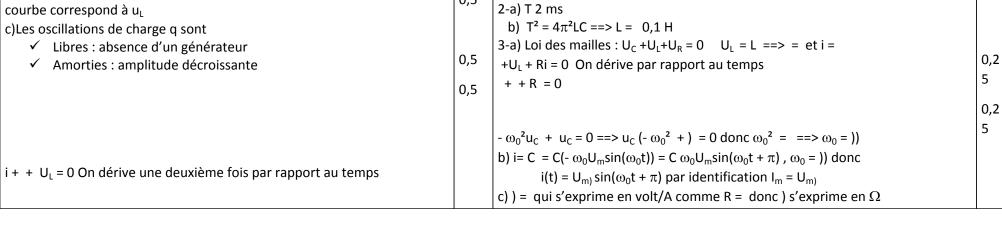
1-a) π_0 = AN : π_0 = 1< K , la réaction évolue spontanément dans le sens direct

b)

équation de la réaction		CO +	Cl ₂ <=	== COCl ₂
			>	
état du	avancemen	n(CO)	n(Cl ₂)	n(COCl ₂)
système	t			
état initial	0	1	2	0,5
état	x	1-x	2-x	0.5 + x
intermédiair				
e				
état final		1 - xf =	2 - xf =	0.5 + xf =
	xf = 0.85	0,15	1,15	1,35

c) A l'équilibre π_{eq} = K et $x_f < x_{max}$ = 1 mol

K = = ce qui donne l'équation


 $32.5x_f^2$ - $101.5x_f$ + 63.5 = 0 de solution acceptable x_f = 0.85 mol Composition voir tableau d'avancement

a) π_0 = 1> K_2 , la réaction évolue spontanément dans le sens inverse

équation de la réaction		CO +	Cl ₂ <=	== COCl ₂
			>	
état du	avancemen	n(CO)	n(Cl ₂)	n(COCl ₂)
système	t			
état initial	0	1	2	0,5
état	x	1+ x	2+x	0.5 - x
intermédiair				
e				
état final		1 + xf =	2 + xf =	0.5 - xf =

	Calcul de x_f : $n = (1+x_f) + (2+x_x) + (0.5-x_f) ==> x_f = 3.67 - 3.5$	
	X _f = 0,17 mol	0,7
	$K_2 = 0.52$	5
,75	b) K ₂ < K ₁ , l'équilibre est déplacé dans le sens inverse qui tend à	
	diminuer la température donc endothermique conformément à la loi de modération	
	Conclusion : La synthèse du phosgène est endothermique	
	3-a) Conformément à la loi de modération l'équilibre sera déplacé dans	0,7
_	le sens direct qui tend à diminuer le nombre de mole total gazeux	5
),5	b) Pour favoriser la réaction de synthèse du phosgène on doit opérer à	
	pression élevée tout en maintenant un refroidissement du système	0,5
	chimique car cette réaction est exothermique Exercice N°2 (2,5 points)	0,5
	1) La vitesse d'une des substances régissantes	
	2) Les masses actives sont comprises comme étant des concentrations	0,5
	3) A l'équilibre, les deux vitesses sont égales	
	4) = K constante d'équilibre	0,5
	5) $V_1 = k_1[N_2][H_2]^3$ sens direct	0,5
,75	$V_2 = K_2[NH_3]^2$ sens inverse	0,5
	$V_1 = V_2 ==> K = =$	
	1 2	0,2
		5
		0,7
		5

	xf = 0.17	1,17	2,17	0,33		q (μC)
<u>Physique</u>						Î
•				. к		
Exercice N°1 (7, Première partie			i		0,25	
1) La charge d'u 2)		(↑ Uc] = ¢ =		3
Loi des mailles :		`	Υ I	1 P	0,5	2
$I = \frac{dq}{dt}$, $u_R = R.i = R$	$R \frac{dq}{dt}$ et $u_c = \frac{q}{C}$		U			1
$RC.\frac{dq}{dt} + q = C.E$						ı «K
α				•••	0,5	
3-a) = $-\alpha$.Be ^{-αt}				ITT	0,5	
$Be^{-\alpha t}$ [1- RC α] = CE = A et RC α =					0,25	-
b) $\tau = 50 \mu s$ (voir c) $\tau = RC ==> R =$	•					C
4) $i = a pente of I(t=0) = 5/50 = 0$	de la droite tang	•			0,5	R
Deuxième partie	<u>.</u>					
1-b) La courbe 3 courbe correspo	•	ı _c car á t = o	$u_{c} = E = + 5 \text{ VO}$	its donc la	0,5	2-a) T 2
c)Les oscillations ✓ Libres : a	s de charge q so absence d'un gé					b) T ² = 3-a) Loi
	s : amplitude dé				0,5	+U _L + Ri + + R =
					0,5	

(50μs,5μC) (75μs,5μC)

225 250 t (μs)

0,5

C(25µs,2µC)

50

Uc

UR

75

100

UL

voie 1

125

150

175

200

25

$$+ + = 0 ==> + + U_L = 0$$

b) $\lambda = R = s'$ exprime en volt/A, L =)) s'exprime en volt .S/A donc

 λ s'exprime en S-1, son inverse s'exprime en seconde donc peut être nommé la constante de temps du circuit RLC

c)
$$\lambda = 250 \text{ S}^{-1}$$
, $\omega_0 = 0$) = 3,162.10³ rad.S⁻¹

 ω = = 3,152.10³ rad.S⁻¹ légèrement inférieure à ω_0 ce qui signifie que la pseudopériode est légèrement supérieure à la période propre

4-a et b) $E = E_C + E_L = \frac{1}{2} C.U_C^2 + \frac{1}{2} L.i^2$ avec i = C = C.a ou a est la pente de la droite tangente à la courbe $U_C(t)$

t(mS)	0	2,5
U _C (V)	5	0
E _C (μj)	12,5	0
I(mA)	0 tang horizontale	-10
Ε _L (μj)	0	5
Ε (μj)	12 ,5	5

c) E(t= 2,5 mS) < E(t= 0) l'énergie du circuit RLC ne se conserve pas

Exercice N°2 (5,5 points)

1-a) = $-\omega_0^2 U_m cos(\omega_0 t) = -\omega_0^2 u_C$ on remplace dans l'équation différentielle

	2-a) $E = Ec + EL = Ec(t=0) = \frac{1}{2} C.Um^2 = Cte$	0,5
	= 0 ==> CU _c + Li ou i = C. et = donc	
	$I[U_C + L] = 0 donc \ U_C + L = 0$	
	b) $E_C + \frac{1}{2} Li^2 = \frac{1}{2} C.U_m^2 ==> E_C = \frac{1}{2} (C.U_m^2 - Li^2)$	
	3-a)	0.5
	\checkmark E _{Cm} = 10 mj	0,5
0,5	✓ Im = 0,2 A fig-1-	
-	$\checkmark = \pi(ms) \text{ donc } T_0 = 2\pi \text{ (ms) fig-2-}$	
	b) $\omega_0 = 1000 \text{ rad.S}^{-1}$	0,7
	Calcul de L : $I_m = U_{m_1} = > I_m^2 = U_{m_1}^2 = U_{m_2}^2 = 1/2 CU_{Mc}^2 donc = 1/2 CU$	5
	Alors L = 2. = 0,5 H	
	Calcul de C : ω_0^2 = ==> C = = 2.10 ⁻⁶ F	
0,5	Calcul de $U_{mC} = 100 \text{ v}$	0,5
0,5	4) $E_L = E_C ==> 2$ $E_C = E ==> E_C = = 5$ mj pour $i = \pm 0.14$ A et $t = \pi/4\pi$ ms, $3\pi/4$ ms	
	Etc	
		0,5
		0,2
		5
		0,2
0,75		5
		0,2
		5
		0,5
0,25		0,2
		5
		0,5
		0,2
		5

	0.3
	0,2
	5
	_
	0,7
	5
	5