

PROF: MAALEJ MOHAMFI

EPREUVE DE SCIENCES PHYSIQUE

DEVOIR DE CONTROLE N° 1 (1 ére SEMESTRE

ANNEE SCOLAIRE : 2017 / 2018 CLASSE : 4 éme MATH 1 DATE: Novembre 2017 **DUREE: 2 Heures**

Dipôle RC

L'épreuve comporte un exercice de chimie et un exercice de physique répartis sur quatre pages numérotées de 1/4 à 4/4. Les pages 3/4 et 4/4 sont à remplir par l'élève et à remettre avec la copie. */ PHYSIQUE:

*/ CHIMIE:

*/ Avancement d'une réaction chimique

N.B: */ Il est absolument interdit d'utiliser le correcteur.

Il sera tenu compte de la qualité de la rédaction ainsi que de sa concision.

Chimie : (7 points)

On se propose d'étudier dans cet exercice la cinétique chimique de la réaction d'oxydation des ions manganèse Mn²⁺ par les ions périodate IO₄, en milieu acide.

Les couples redox mis en jeu sont : MnO_4^-/Mn^{2+} , IO_4^-/IO_3^- .

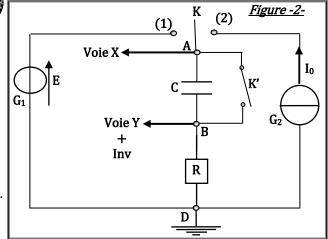
Dans un érlenmeyer contenant un volume $V_1 = 30 \text{mL}$ d'une solution aqueuse (S_1) périodate de calcium $Ca(IO_4)_2$ de concentration C_1 , on ajoute à un instant de date t=0, un volume $V_2=100 \text{mL}$ d'une solution aqueuse (S₂) de sulfate de manganèse Mn SO₄ de concentration $C_2 = 76.10^{-6}$ mol.L-1. On acidifie le milieu.

L'étude cinétique permet de tracer la courbe de la *figure -1- de la page 3/4* qui représente les variations de la concentration des ions [IO₄] dans le mélange au cours du temps.

Toutes les applications numériques seront données en utilisant le sous multiple micro.

- 1°) Décrire qualitativement, la transformation qui se produit dans l'érlenmeyer. Quelle est la couleur du mélange réactionnel à la fin de la réaction.
- 2°) a) Ecrire l'équation formelle de chaque couple , sachant que les deux couples réagissent en milieu acide.
- b) En déduire que l'équation chimique de la réaction d'oxydoréduction modélisant cette transformation s'écrit:

$$2 \text{ Mn}^{2+} + 5 \text{ IO}_4^- + 9 \text{ H}_2\text{O} \longrightarrow 2 \text{ MnO}_4^- + 5 \text{ IO}_3^- + 6 \text{ H}_3\text{O}^+$$


- 3°) a) Déterminer les quantités de matière initiales $n_0(IO_4^-)$ et $n_0(Mn^2+)$ des réactifs utilisés.
- **b)** En déduire la valeur de C₁.
- 4°) a) Dresser le tableau descriptif d'évolution du système chimique.
- b) Calculer l'avancement final x_f de la réaction. Déduire que la réaction est totale.
- c) Réaliser un bilan de matière à l'état final de MnO₄-, Mn²⁺, IO₄- et IO₃-.
- **5°)** Définir et déterminer le temps de demi réaction.
- 6°) Représenter sur la *figure -1- de la page 3/4*, en respectant la même échelle, l'allure de la courbe y=f(t), y est l'avancement volumique de la réaction.

Lycée Hedi Chaker SFAX Prof: Maâlej Med Habib Devoir de contrôle N°1 Classe : 4^{éme} Math 1

PHYSIQUE : (13 points)

Le circuit de la *figure -2-* comporte :

- */ Un générateur de tension idéal G1 de fem E.
- */ Un commutateur K.
- */ Un interrupteur K'.
- */ Un conducteur ohmique de résistance $R = 147.3 \text{ k}\Omega$.
- */ Un condensateur de capacité C
- */ Un générateur de courant idéal G₂ débitant un courant d'intensité constante I₀.
- */ Un oscilloscope à mémoire convenablement branchée. On réalise deux expériences différentes.

<u>I°) EXPERIENCE N°1 :</u>

L'interrupteur K' étant fermé, à un instant de

date t = 0 pris comme origine des temps, on ouvre K' en même temps qu'on bascule K sur la position (2).

- **1°)** Quel est la réponse du dipôle RC considéré à l'échelon de courant $(0 \rightarrow I_0)$.
- 2°) Quelles sont les tensions observées sur chaque voie de l'oscilloscope?
- **3°)** Le sélectionneur des voies de l'oscilloscope est placé sur la position « CH1 ». On observe sur l'écran l'oscillogramme représentant la tension de la voie X. Voir <u>figure-3- de la page 3/4</u> On donne les calibres de l'oscilloscope :
- */ Balayage des temps: 10ms /div.
- */ Calibre des tensions pour les deux voies : 2V/div.
- a) Déterminer l'intensité I₀ du courant débité par G₂ ainsi que la valeur de la capacité C du condensateur.
- **b)** Le sélectionneur des voies de l'oscilloscope est placé maintenant sur la position « DUAL ». Représenter sur l'écran de l'oscilloscope de la *figure-3- de la page 3/4* la tension de la voie Y.
- c) La durée de cette expérience est de 100ms, calculer la tension du condensateur à la fin de cette expérience notée U_{Cf}
- d) Comment peut-on rendre cette expérience plus rapide? Justifier.
- 4°) Le condensateur étudié est plan. Déterminer la distance e séparant ses deux armatures.

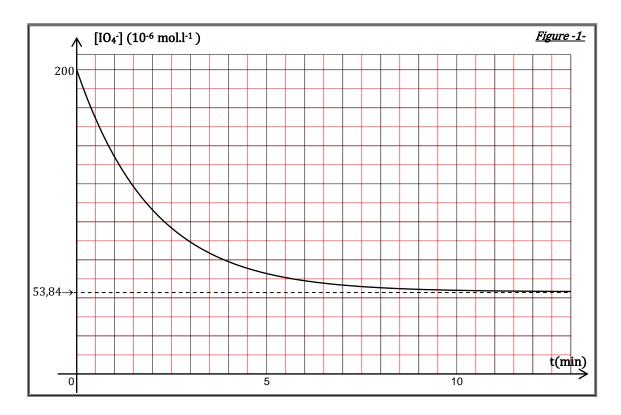
On donne:

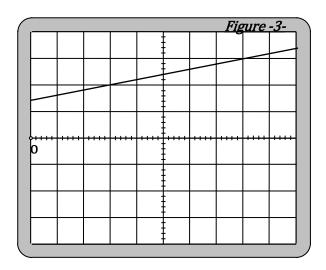
- */ La permittivité relative du diélectrique : $\varepsilon_r = 2.5$.

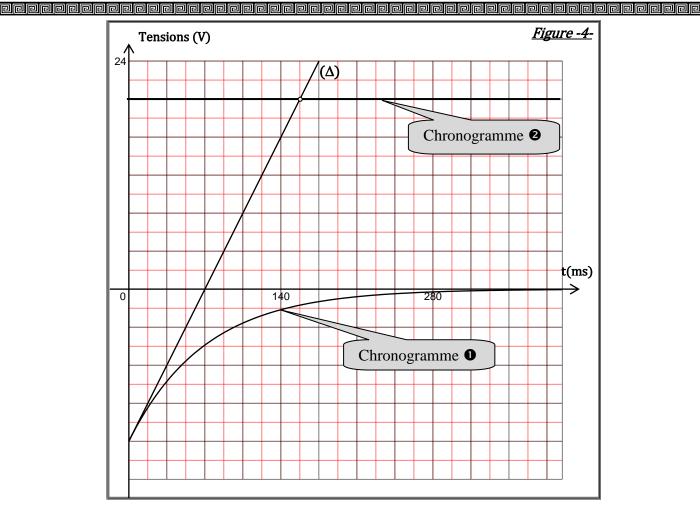
II°) EXPERIENCE N°2:

La fin de l'expérience N°1, représente une nouvelle origine des temps, au cours de la quelle, on bascule K sur la position (1). (K' étant toujours ouvert).

Une interface reliée à un ordinateur permet de transformer les oscillogrammes observés sur les voies X et Y de l'oscilloscope en des chronogrammes **0** et **2** de la *figure -4- de la page 4/4*


- 1°) Préciser le phénomène physique qui se produit au niveau du condensateur.
- 2°) a) Identifier, en le justifiant, les chronogrammes et •.
- b) En déduire la valeur de E.
- **3°)** Déterminer graphiquement la constante de temps du dipôle RC considéré. La méthode sera indiquée sur la *figure -4- de la page 4/4.*
- **4°) a)** Etablir l'équation différentielle qui régit l'évolution de la tension $u_R(t)$ aux bornes du résistor.
- b) La solution de cette équation est de la forme : $u_R(t) = A \exp(Kt)$ B, déterminer les expressions des constantes A, B et K en fonction des paramètres du circuit. Ecrire alors l'expression de $u_R(t)$ et en déduire l'expression de la tension aux bornes du condensateur $u_C(t)$.
- **5°)** Si le condensateur est chargé à 8% prés.
- a)Montrer que $u_C = 92\%E$.
- **b)** Calculer la durée de la charge notée t_{Ch}


III°) On désire comparer la charge d'un condensateur avec un générateur idéal de courant (Expérience N°1) à la charge d'un condensateur avec un générateur idéal de tension (Expérience N°2).
Remplir le tableau de la figure -5- de la page 4/4.


Lycée Hedi Chaker SFAX Prof : Maâlej Med Habib Devoir de contrôle N°1 Classe : 4\(\pm\) Math 1 Page 2/4

NOM ET PRENOM: CLASSE:

FEUILLE A REMETTRE AVEC LA COPIE

	<u>Figur</u>	
	Charge d'un condensateur avec un générateur idéal de courant	Charge d'un condensateur avec un générateur idéal de tension
Nature de la charge	de courant	de tension
Courbe u _C (t)		
Citer un avantage		
Citer un inconvénient		
Effet du résistor R sur la charge		

Prof : Maâlej Med Habib

Lycée Hedi Chaker SFAX