4° maths 1 durée : 2 heures

Exercice 1 (3 points)

Voir la correction

Pour chaque proposition choisir l'unique bonne réponse. Aucune justification n'est demandée.

1. Lorsque θ décrit $[0,2\pi]$ alors $M(\mathfrak{i}-e^{\mathfrak{i}\frac{\theta}{2}}-e^{-\mathfrak{i}\frac{\theta}{2}})$ décrit :

a) un cercle

b) un arc d'un cercle

c) un segment de droite

2. Soit u la suite définie sur \mathbb{N} par $u_0 = 1$ et $u_{n+1} - u_n = \frac{1}{u_n^2}$. Alors :

a) u est convergente.

 $\mathrm{b})\quad \lim_{n\to +\infty}u_n=+\infty$

c) u n'admet pas de limite.

 $3. \lim_{n \to +\infty} \frac{n + \sin(n\frac{\pi}{3})}{n^2 + 1} =$

b) +∞

c) $-\infty$

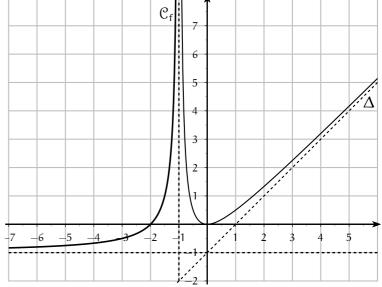
Exercice 2 (5 points)

Voir la correction

la courbe C_f représentée ci-contre est la courbe représentative d'une fonction f définie et continue sur $\mathbb{R}\setminus\{-1\}$.

On sait que:

- ✓ La droite Δ : y = x 1 est une asymptote à C_f au voisinage de +∞
- ✓ La droite Δ' : y = -1 est une asymptote à C_f au voisinage de -∞
- \checkmark La droite d'équation x=-1 est une asymptote à C_f .



- 1. A l'aide du graphique et des renseignements fournis déterminer :
 - (a) $\lim_{x \to +\infty} f(x)$, $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} (f(x) x + 1)$.
 - (b) $\lim_{x\to -1} f(x)$. En déduire $\lim_{x\to -\infty} f\left(\frac{-x+1}{x+1}\right)$.
 - (c) $\lim_{x \to +\infty} \frac{f(x)}{x}$. En déduire $\lim_{x \to +\infty} \frac{f(x^2+1)}{x}$.
- 2. Soit la fonction $g: x \longmapsto \frac{1}{\sqrt{f(x)}}$
 - (a) Déterminer l'ensemble de définition de $\mathfrak{g}.$
 - (b) Montrer que la fonction g est prolongeable par continuité en -1.
- 3. (a) Déterminer l'ensemble de définition de $\mathsf{f} \circ \mathsf{f}.$
 - (b) Déterminer $\lim_{x \to +\infty} (f \circ f)(x)$, $\lim_{x \to -\infty} (f \circ f)(x)$, $\lim_{x \to -1} \frac{(f \circ f)(x)}{f(x)}$.

4° maths 1 durée : 2 heures

Exercice 3 (6 points)

Voir la correction

Le plan complexe est muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$. Soient les points A(i) et B(-i). Soit f l'application de $\mathcal{P}\setminus\{B\}$ dans \mathcal{P} qui à tout point M(z) associe le point M'(z') tel que : $z'=\frac{iz+1}{z+i}$. I- On désigne par \mathcal{C} le cercle de centre O et de rayon 1.

- 1. Soit $M(z) \in \mathcal{P} \setminus \{A, B\}$, $N(\overline{z})$ et M'(z') l'image de M par f.
 - (a) Montrer que A, N et M' sont alignés.
 - (b) Montrer que : $(\overrightarrow{u}, \overrightarrow{OM'}) \equiv \frac{\pi}{2} + (\overrightarrow{MB}, \overrightarrow{MA}) [2\pi].$
 - (c) En déduire que : z' est un réel non nul si, et seulement si, M appartient au cercle $\mathcal C$ privé de A et B.
- 2. Soit $M_1 \in \mathcal{C} \setminus \{A, B\}$ et $M'_1 = f(M_1)$. Déduire des questions précédentes une construction de M'_1 .

II- Soit dans \mathbb{C} l'équation (E): $\left(\frac{iz+1}{z+i}\right)^3=1$.

- 1. (a) Montrer que si z est solution de (E) alors M(z) appartient à la médiatrice de [AB].
 - (b) En déduire que si z est solution de (E) alors z est réel.
- 2. (a) Soit $\alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

 Montrer que: $\frac{i \tan \alpha + 1}{\tan \alpha + i} = e^{i(2\alpha \frac{\pi}{2})}$.
 - (b) En déduire les valeurs de $\alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ tels que tan α soit une solution de l'équation (E).

Exercice 4 (6 points)

Voir la correction

Soit $\mathfrak u$ la suite définie sur $\mathbb N$ par : $\left\{ \begin{array}{l} u_0=2\\ u_{n+1}=\frac{1+u_n^2}{2u_n} \end{array} \right. ; \ \mathrm{pour \ tout} \quad n\in \mathbb N$

- 1. Montrer que pour tout $n \in \mathbb{N}$, $u_n \geqslant 1$.
- 2. (a) Étudier la monotonie de la suite $\mathfrak u$.
 - (b) En déduire que la suite $\mathfrak u$ est convergente et déterminer sa limite.
- $3. \quad (a) \ \ \mathrm{Montrer} \ \mathrm{que} \ \mathrm{pour} \ \mathrm{tout} \ n \in \mathbb{N}, \ u_{n+1}-1 \leqslant \frac{1}{2}(u_n-1).$
 - (b) En déduire que pour tout $n \in \mathbb{N}$, $u_n 1 \leqslant \left(\frac{1}{2}\right)^r$
 - (c) Retrouver la limite de la suite ${\tt u}$.
- 4. Soit (S_n) la suite définie sur \mathbb{N}^* par : $S_n = \sum_{k=1}^n u_k$.
 - (a) Montrer que pour tout $n \in \mathbb{N}^*$, $n \leqslant S_n \leqslant n+1-\frac{1}{2^n}$.
 - $\text{(b) Déterminer } \lim_{n \to +\infty} S_n \text{ et } \lim_{n \to +\infty} \frac{S_n}{n}.$

Correction de l'exercice: 1 | (Q.C.M)

Retour à l'énoncé

$$1. \ z_{\mathsf{M}} = \mathfrak{i} - e^{\mathfrak{i}\frac{\theta}{2}} - e^{-\mathfrak{i}\frac{\theta}{2}} = \mathfrak{i} - \left(e^{\mathfrak{i}\frac{\theta}{2}} + e^{-\mathfrak{i}\frac{\theta}{2}}\right) = \mathfrak{i} - 2\cos\left(\frac{\theta}{2}\right). \ \mathrm{Donc} \ \mathsf{M}\left(-2\cos\left(\frac{\theta}{2}\right) \ , \ 1\right).$$

Alors $M \in \mathcal{D} : y = 1 \text{ et } x \in [-2, 2].$

Par suite l'ensemble des points $M\left(i-e^{i\frac{\theta}{2}}-e^{-i\frac{\theta}{2}}\right)$, $\theta\in[0,2\pi]$ n'est ni un cercle ni un arc d'un cercle.

Ainsi la réponse correcte est (c), c'est à dire l'ensemble des points $M(i - e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}}), \theta \in [0, 2\pi]$ est un segment de

2. Pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n = \frac{1}{u_n^2} > 0$ alors la suite (u_n) est croissante.

Supposons que la suite (u_n) est majorée alors elle est convergente vers une limite ℓ .

(Car une suite croissante et majorée est convergente).

La suite (u_n) est croissante donc pour tout $n \in \mathbb{N}$, $u_n \ge u_0$ donc $u_n \ge 1$ donc $\ell \ge 1$.

$$\lim_{n\to +\infty} u_n = \ell \implies \lim_{n\to +\infty} u_{n+1} = \ell.$$

Pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n = \frac{1}{u_n^2} \implies \lim_{n \to +\infty} (u_{n+1} - u_n) = \lim_{n \to +\infty} \frac{1}{u_n^2} \implies \ell - \ell = \frac{1}{\ell^2} \implies \frac{1}{\ell^2} = 0$. Ce qui est

impossible alors la suite (u_n) est non majorée. On conclut que la suite (u_n) est croissante et non majorée par suite $\lim_{n\to +\infty} u_n = +\infty.$

La réponse correcte est (b).

$$3. \ \forall n \in \mathbb{N}, -1 \leqslant \sin(n\frac{\pi}{3}) \leqslant 1 \implies n-1 \leqslant n+\sin(n\frac{\pi}{3}) \leqslant n+1 \implies \frac{n-1}{n^2+1} \leqslant \frac{n+\sin(n\frac{\pi}{3})}{n^2+1} \leqslant \frac{n+1}{n^2+1} \leqslant \frac{n+1}{n^2+1}$$

Correction de l'exercice: 2

Retour à l'énoncé

1. (a)
$$\lim_{x \to +\infty} f(x) = +\infty$$
, $\lim_{x \to -\infty} f(x) = -1$ et $\lim_{x \to +\infty} (f(x) - x + 1 = 0)$.

(b)
$$\lim_{x \to -1} f(x) = +\infty$$

$$\lim_{x\to -\infty}\frac{-x+1}{x+1}=-1 \text{ et } \lim_{x\to -1}f(x)=+\infty.\ \lim_{x\to -\infty}f\left(\frac{-x+1}{x+1}\right)=+\infty.$$

(c)
$$\lim_{x \to +\infty} \frac{f(x)}{x} = 1$$
.

$$\lim_{x \to +\infty} \frac{f(x^2 + 1)}{x} = \lim_{x \to +\infty} \frac{f(x^2 + 1)}{x^2 + 1} \times \frac{x^2 + 1}{x} = +\infty \text{ car :}$$

$$\lim_{x \to +\infty} \frac{f(x^2 + 1)}{x^2 + 1} = \lim_{X \to +\infty} \frac{f(X)}{X} = 1 \text{ (avec } X = x^2 + 1 \text{) et } \lim_{x \to +\infty} \frac{x^2 + 1}{x} = \lim_{x \to +\infty} \frac{x^2}{x} = \lim_{x \to +\infty} x = +\infty$$

2. Soit la fonction
$$g: x \longmapsto \frac{1}{\sqrt{f(x)}}$$

(a) L'ensemble de définition de \mathcal{D}_{q} de g est :

$$\mathcal{D}_{g} = \{x \in \mathbb{R}/x \in \mathcal{D}_{f} \text{ et } f(x) > 0\} =]-2, -1[\cup] -1, 0[\cup]0, +\infty[$$

$$\mathrm{(b)}\ \lim_{x\to -1}\frac{1}{\sqrt{f(x)}}=0\ \mathrm{car}\ \lim_{x\to -1}f(x)=+\infty.$$

Donc la fonction g est prolongeable par continuité en -1.

(a) $(f \circ f)(x) = f[f(x)].$

Donc $(f \circ f)(x)$ est définie si, et seulement si, $x \in \mathcal{D}_f$ et $f(x) \in \mathcal{D}_f$.

Or $x \in \mathcal{D}_f \iff x \neq -1$ et pour tout $x \in \mathcal{D}_f$, $f(x) \neq -1$,

donc $(f \circ f)$ est définie sur $\mathbb{R} \setminus \{-1\}$.

(b)
$$\lim_{x \to -\infty} (f \circ f)(x) = \lim_{x \to -\infty} f[f(x)] = +\infty.$$

$$\lim_{x \to +\infty} (f \circ f)(x) = \lim_{x \to +\infty} f[f(x)] = +\infty \text{ car } \lim_{x \to +\infty} f(x) = -1 \text{ et } \lim_{x \to +\infty} f(x) = +\infty$$

$$\lim_{x \to +\infty} (f \circ f)(x) = \lim_{x \to +\infty} f(f(x)) = +\infty.$$

$$\lim_{x \to -\infty} (f \circ f)(x) = \lim_{x \to -\infty} f[f(x)] = +\infty \text{ car } \lim_{x \to -\infty} f(x) = -1 \text{ et } \lim_{x \to -1} f(x) = +\infty.$$

$$\lim_{x \to -1} \frac{(f \circ f)(x)}{f(x)} = \lim_{x \to -1} \frac{f[f(x)]}{f(x)} = \lim_{x \to +\infty} \frac{f[X]}{X} = 1 \text{ (avec } X = f(x) \text{)}.$$

Correction de l'exercice: 3

Retour à l'énoncé

 $1. \quad \text{(a)} \quad \frac{\mathrm{Aff}(\overrightarrow{AM'})}{\mathrm{Aff}(\overrightarrow{AN'})} = \frac{z' - \mathfrak{i}}{\overline{z} - \mathfrak{i}} = \frac{\frac{\mathfrak{i}z + \mathfrak{i}}{z + \mathfrak{i}} - \mathfrak{i}}{\overline{z} - \mathfrak{i}} = \frac{2}{(z + \mathfrak{i})(\overline{z} - \mathfrak{i})} = \frac{2}{(z + \mathfrak{i})(\overline{z} + \mathfrak{i})} = \frac{2}{|z + \mathfrak{i}|^2} \in \mathbb{R}.$ Donc $\overline{AM'}$ et \overline{AN} sont colinéaires. Donc A, N et M' sont alignés.

(b) $z' = \frac{iz+1}{z+i} = i\left(\frac{z-i}{z+i}\right)$. $\left(\overrightarrow{\overrightarrow{u}}, \overrightarrow{OM'}\right) \equiv \arg(z')[2\pi] \equiv \arg(\mathfrak{i}) + \arg\left(\frac{z-\mathfrak{i}}{z+\mathfrak{i}}\right) \equiv \frac{\pi}{2} + \arg\left(\frac{z_{M}-z_{A}}{z_{M}-z_{B}}\right) \equiv \frac{\pi}{2} + \left(\overrightarrow{MB}, \overrightarrow{MA}\right)[2\pi].$

(c) Soit $M(z) \in \mathcal{P} \setminus \{B\}$. $z' \text{ est un r\'eel non nul } \iff \arg(z') = k\pi, k \in \mathbb{Z} \text{ et } z' \neq 0 \iff \frac{\pi}{2} + \left(\widehat{\overline{MB}}, \widehat{\overline{MA}} \right) = k\pi, k \in \mathbb{Z} \text{ et } z \neq i$ $\iff \left(\overrightarrow{MB}, \overrightarrow{MA}\right) = -\frac{\pi}{2} + k\pi, k \in \mathbb{Z} \text{ et } M \neq A \iff M \text{ appartient au cercle \mathfrak{C} priv\'e de A et B.}$

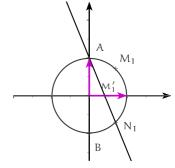
2.

Soit $M_1(z_1) \in \mathcal{C} \setminus \{A, B\}$ et $M'_1(z'_1) = f(M_1)$.

D'après la question 1. (c) on déduit que z_1' est réel. Donc $M_1' \in (0, \overrightarrow{u})$.

D'après la question 1. (a), $M_1' \in (AN_1)$ avec $N_1 = S_{(O,\overrightarrow{\mathfrak{u}})}(M)$.

D'où M_1' est le point d'intersection de l'axe $(0,\overline{\mathfrak{u}}')$ et la droite (AN_1) .



1. (a) Soit z une solution de l'équation (E) et M(z). Donc $\left(\frac{\mathbf{i}z+1}{z+\mathbf{i}}\right)^3=1$ donc $\left|\left(\frac{\mathbf{i}z+1}{z+\mathbf{i}}\right)^3\right|=1$ donc $\left|\left(\frac{\mathbf{i}z+1}{z+\mathbf{i}}\right)^3\right|=1$ IIappartient à la médiatrice de [AB].

(b) Soit z une solution de l'équation (E) et M(z) alors M(z) appartient à la médiatrice de [AB] donc $M(z) \in (O, \overrightarrow{\mathfrak{u}})$

2. (a) $\frac{i\tan\alpha+1}{\tan\alpha+i} = \frac{i\left(\frac{\sin\alpha}{\cos\alpha}\right)+1}{\frac{\sin\alpha}{\sin\alpha+i}} = \frac{i\sin\alpha+\cos\alpha}{\sin\alpha+i\cos\alpha} = \frac{\cos\alpha+i\sin\alpha}{i(\cos\alpha-i\sin\alpha)} = \frac{e^{i\alpha}}{ie^{-i\alpha}} = \frac{e^{i\alpha}}{e^{i(\frac{\pi}{2}-\alpha)}} = e^{i(2\alpha-\frac{\pi}{2})}.$

(b) $\tan \alpha$ est solution de (E) et $\alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\iff \left(\frac{i \tan \alpha + 1}{\tan \alpha + i} \right)^3 = 1 \text{ et } \alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)^3 = 1 \text{ et } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \left(e^{i \left(2\alpha - \frac{\pi}{2} \right)} \right)$ et $\alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\iff e^{i(6\alpha - \frac{3\pi}{2})} = 1 \text{ et } \alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\iff 6\alpha - \frac{3\pi}{2} = 2k\pi, k \in \mathbb{Z} \text{ et } \alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\iff \alpha = \frac{\pi}{4} + \frac{k\pi}{3} \text{ et } \alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\iff \alpha = \frac{\pi}{4} \text{ ou } \alpha = \frac{-\pi}{12} \text{ ou } \alpha = \frac{-5\pi}{12}$

Correction de l'exercice: 4

Retour à l'énoncé

1. Montrons par récurrence que pour tout $n \in \mathbb{N}$, $u_n \ge 1$.

Vérifions pour n = 0.

 $u_0 \geqslant 1 \iff 2 \geqslant 1 \text{ vrai.}$

$$\begin{array}{l} {\rm Supposons \; que \; } u_n \geqslant 1 \; {\rm et \; montrons \; que \; } u_{n+1} \geqslant 1. \\ u_{n+1} - 1 = \frac{1 + u_n^2}{2u_n} - 1 = \frac{1 + u_n^2 - 2u_n}{2u_n} = \frac{(1 - u_n)^2}{2u_n}. \end{array}$$

Correction du devoir de contrôle n° 1

$$\begin{array}{l} u_n\geqslant 1 \implies \frac{(1-u_n)^2}{2u_n}\geqslant 0 \implies u_{n+1}\geqslant 1. \\ \mathrm{Conclusion}: \mathrm{pour} \ \mathrm{tout} \ n\in \mathbb{N}, u_n\geqslant 1 \end{array}$$

(a) Soit $n \in \mathbb{N}$.

$$\begin{split} u_{n+1}-u_n&=\frac{1+u_n^2}{2u_n}-u_n=\frac{1+u_n^2-2u_n^2}{2u_n}=\frac{1-u_n^2}{2u_n},\\ u_n\geqslant 1\implies u_n^2\geqslant 1\implies \frac{1-u_n^2}{2u_n}\leqslant 0\implies u_{n+1}-u_n\leqslant 0. \end{split}$$

D'où la suite (u_n) est décroissante.

(b) La suite (u_n) est décroissante et minoré donc elle est convergente vers une limite ℓ .

Pour tout $n \in \mathbb{N}$, $u_n \ge 1$ donc $\ell \ge 1$.

On a:

$$\checkmark$$
 $u_{n+1} = f(u_n)$ avec $f: x \longmapsto \frac{1+x^2}{2x}$.

 \checkmark (u_n) est convergente vers ℓ avec $\ell \geqslant 1$.

 \checkmark La fonction f est une fonction rationnelle continue sur $D_f = \mathbb{R}^*$ en particulier en ℓ .

$$\ell = f(\ell) \iff \frac{1+\ell^2}{2\ell} = \ell \iff 1+\ell^2 = 2\ell^2 \iff \ell^2 = 1 \iff \ell = 1 \text{ ou } \ell = -1.$$

 $\begin{array}{ll} 3. & (a) \ u_{n+1}-1=\frac{(1-u_n)^2}{2u_n}=\frac{(u_n-1)^2}{2u_n}=\left(\frac{u_n-1}{2u_n}\right)(u_n-1).\\ & \frac{u_n-1}{2u_n}=\frac{1}{2}-\frac{1}{2u_n}. \end{array}$

$$\frac{u_n - 1}{2u_n} = \frac{1}{2} - \frac{1}{2u_n}.$$

La suite
$$(u_n)$$
 est décroissante donc pour tout $n \in \mathbb{N}$, $u_n \le u_0$ donc pour tout $n \in \mathbb{N}$, $u_n \le 2$. $u_n \le 2 \Longrightarrow 2u_n \le 4 \Longrightarrow \frac{1}{2u_n} \geqslant \frac{1}{4} \Longrightarrow -\frac{1}{2u_n} \le -\frac{1}{4} \Longrightarrow \frac{1}{2} - \frac{1}{2u_n} \le \frac{1}{4} \Longrightarrow \frac{u_n - 1}{2u_n} \le \frac{1}{4}$.

$$\mathrm{Comme}\ u_n - 1 \geqslant 0\ \mathrm{alors}\ \left(\frac{u_n - 1}{2u_n}\right)(u_n - 1) \leqslant \frac{1}{4}(u_n - 1)\ \mathrm{donc}\ u_{n+1} - 1 \leqslant \frac{1}{4}(u_n - 1) \leqslant \frac{1}{2}(u_n - 1).$$

(b) Montrons par récurrence que pour tout $n \in \mathbb{N}$, $u_n - 1 \leqslant \left(\frac{1}{2}\right)^n$.

Vérifions pour n = 0.

$$u_0-1\leqslant \left(\frac{1}{2}\right)^0\iff 2-1\leqslant 1\iff 1\leqslant 1 \ \mathrm{vrai}.$$

Supposons que $u_n - 1 \leqslant \left(\frac{1}{2}\right)^n$ et montrons que $u_{n+1} - 1 \leqslant \left(\frac{1}{2}\right)^{n+1}$

$$u_n - 1 \leqslant \left(\frac{1}{2}\right)^n \implies \frac{1}{2}(u_n - 1) \leqslant \left(\frac{1}{2}\right)^{n+1}.$$

D'après la question (a) on a : $u_{n+1} - 1 \le \frac{1}{2}(u_n - 1)$.

$$\mathrm{Donc},\, \mathfrak{u}_{n+1}-1\leqslant \left(\frac{1}{2}\right)^{n+1}.$$

Conclusion : Pour tout $n \in \mathbb{N}$, $u_n - 1 \leqslant \left(\frac{1}{2}\right)^n$.

$$\mathrm{(c)}\ \mathrm{On}\ \mathrm{a}: 0\leqslant u_n-1\leqslant \left(\frac{1}{2}\right)^n\ \mathrm{et}\ \lim_{n\to +\infty}\left(\frac{1}{2}\right)^n=0\ \mathrm{donc}\ \lim_{n\to +\infty}\left(u_n-1\right)=0\ \mathrm{donc}\ \lim_{n\to +\infty}u_n=1.$$

(a) Pour tout $k \in \mathbb{N}$, $1 \le u_k \le 1 + \left(\frac{1}{2}\right)$

$$\mathrm{donc}, \ \sum_{k=1}^n 1 \leqslant \sum_{k=1}^n u_k \leqslant \sum_{k=1}^n 1 + \sum_{k=1}^n \left(\frac{1}{2}\right)^k \ \mathrm{donc}, \ n \leqslant S_n \leqslant n + \frac{1}{2} \left(\frac{1 - (\frac{1}{2})^n}{1 - \frac{1}{2}}\right) \ \mathrm{donc}, \ n \leqslant S_n \leqslant n + 1 - \frac{1}{2^n}.$$

5. Pour tout $n \in \mathbb{N}^*$, $n \leq S_n$ et $\lim_{n \to +\infty} n = +\infty$ alors $\lim_{n \to +\infty} S_n = +\infty$

$$\mathrm{Pour\ tout\ } n \in \mathbb{N}^*, \, n \leqslant S_n \leqslant n+1-\frac{1}{2^n} \mathrm{\ donc\ } 1 \leqslant \frac{S_n}{n} \leqslant 1+\frac{1}{n}-\frac{1}{n \times 2^n}.$$

$$\text{Comme } \lim_{n \to +\infty} 1 + \frac{1}{n} - \frac{1}{n \times 2^n} = 1 \text{ et } \lim_{n \to +\infty} 1 = 1 \text{ alors } \lim_{n \to +\infty} \frac{S_n}{n} = 1$$