| Prof   | Mechmeche Imed          |
|--------|-------------------------|
| Lycée  | Borj-cedria             |
| Niveau | 4 <sup>ème</sup> Maths1 |

#### Devoir de contrôle N°1

| Matière | Maths      |
|---------|------------|
| Date    | 05/11/2012 |
| Durée   | 2 h        |

## Exercice 1: (5 pts)

Soit 
$$f$$
 la fonction définie sur  $\mathbb{R}\setminus\{1\}$  par  $f(x)=\begin{cases} \frac{x-1}{\sqrt{x^2-1}} & si \ x\in\ ]-\infty,-1[\ \cup\ ]1,+\infty[\ \frac{\sin(\pi x)}{\pi(1-x)} & si\ x\in\ [-1,1[\ ]] \end{cases}$ 

- 1) Calculer la limite de f en  $-\infty$ , en  $+\infty$ , à gauche en -1
- 2) Calculer la limite de f à droite en 1
- 3) Sachant que f est strictement décroissante sur  $]-\infty, -1[$  et strictement croissante sur  $]1, +\infty[$ , déterminer  $f(]-\infty, -1[$ ) et  $f(]1, +\infty[$ )
- 4) Montrer que f n'est pas prolongeable par continuité en 1.
- 5) Monter que l'équation  $f(x) = \frac{1}{\pi}$  admet au moins une solution  $\alpha \in \left] \frac{1}{6} \right]$ ,  $\frac{1}{2} \left[ \frac{1}{6} \right]$
- 6) Soit h la restriction de f à  $]-\infty,-1[\cup]1,+\infty[$  et  $g=h\circ h$  a- Déterminer l'ensemble de définition E de g
  - b- Calculer les limites de g aux bornes de E

### Exercice 2: (5 pts)

Le plan complexe est rapporté à un repère orthonormé  $(0,\vec{u},\vec{v})$ . Soit f l'application du plan dans lui-même qui à tout point M(z), associe le point M'(z') tel que  $z'=\frac{2(i-\bar{z})}{i+z}$ ;  $z\neq -i$ . On considère les points B(-i), C(i), A(2) et  $N(\bar{z})$  On désigne par  $\mathcal{C}_{(0,2)}$  le cercle de centre 0 et rayon 2

- 1) Montrer que  $M' \in \mathcal{C}_{(0,2)}$ .
- 2) a- Résoudre dans  $\mathbb{C} \ z'=2$ . b- En déduire l'ensemble des antécédents de A par f.
- 3) a- Montrer que  $\frac{z'-2}{\bar{z}-i}$  est un réel.
  - b- En déduire que les droites (AM') et (CN) sont parallèles.
  - c- Expliquer comment construire M' connaissant M
- 4) La droite (AC) recoupe  $\mathcal{C}_{(O,2)}$  en E. Montrer que  $f(AB) \setminus \{B\} = \{E\}$

### Exercice 3: (4 pts)

Soit l'équation $(E_{\theta}): z^2+(2i\sin\theta-2)z-2e^{i\theta}-1=0$  ,  $\theta\in ]-\pi$  ,  $\pi[.$ 

- 1) vérifier que  $(2i \sin\theta 2)^2 + 8e^{i\theta} + 4 = (2\cos\theta + 2)^2$
- 2) Résoudre alors  $(E_{\theta})$ .
- 3) Soient les points A(1),  $M\left(-e^{i\theta}\right)$  et  $N\left(2+e^{-i\theta}\right)$  a-Montrer que  $Z_{\overrightarrow{AM}}=-2\cos\left(\frac{\theta}{2}\right)e^{i\left(\frac{\theta}{2}\right)}$  et  $Z_{\overrightarrow{AN}}=2\cos\left(\frac{\theta}{2}\right)e^{-i\left(\frac{\theta}{2}\right)}$ 
  - b- En déduire que le triangle *AMN* est isocèle en *A*.
- 4) Pour quelles valeurs de  $\theta$  le triangle AMN est-il équilatéral ?

# Exercice 4: (6 pts)

Soit la fonction f définie sur  $[0, +\infty[$  par  $f(x) = 1 + \frac{8}{x+1}$ .

et 
$$(U_n)_{n\geq 0}$$
 la suite définie par : 
$$\begin{cases} U_0 = 7 \\ U_{n+1} = f(U_n) \end{cases}$$

- 1) Montrer que pour tout  $n \in \mathbb{N}$  ,  $2 \le U_n \le 7$
- 2) On pose pour tout  $n \in \mathbb{N}$   $V_n = U_{2n}$  ,  $W_n = U_{2n+1}$  .
  - a- Montrer que la suite  ${\it V}$  est décroissante et que  ${\it W}$  est croissante.
  - b- En déduire que les suites V et W sont convergentes.
- 3) On désigne par a et b les limites respectives des suites V est W
  - a-Montrer que  $a=1+\frac{8}{b+1}$  et que  $b=1+\frac{8}{a+1}$
  - b- En déduire que a=b=3 et que la suite U converge vers 3.
- 4) a- Montrer que  $|U_{n+1} 3| \le \frac{2}{3}|U_n 3|$ 
  - b- En déduire que  $|U_n 3| \le 4 \left(\frac{2}{3}\right)^n$
  - c- Retrouver alors la limite de la suite U.

