Exercice N°1: (3 points)

La courbe ci-contre représente une fonction f continue sur \mathbb{R} .La droite y=1 désigne à la fois l'asymptote à la courbe de f en $+\infty$ et sa tangente au point d'abscisse 0.

la courbe de f admet une branche parabolique de direction celle de (y'y) au voisinage de $-\infty$.

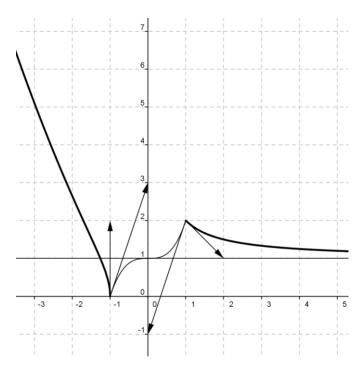
Par justification graphique déterminer :

1)
$$_{x\to -\infty}^{\ \ lim}\,f(x)$$
 , $_{x\to -\infty}^{\ \ lim}\,\frac{f(x)}{x}$, $_{x\to +\infty}^{\ \ lim}\,f(x)$

$$\lim_{x\to (-1)^-}\frac{f(x)}{x+1}\text{ , }\lim_{x\to (-1)^+}\frac{f(x)}{x+1}\text{ , }f'(0)\text{, }\lim_{x\to 1^-}\frac{f(x)-2}{x-1}$$

$$\lim_{x \to 1^+} \frac{f(x) - 2}{x - 1}$$

2)
$$\lim_{x \to 1^+} f(\frac{1}{1-x^2})$$
, $\lim_{x \to +\infty} \frac{\pi}{1-f(x)}$



Exercice N°2: (6 points)

- 1) Soit ω un nombre complexe non nul
- a) Résoudre dans C,l'équation (E) : $\omega^2 z^2 - \omega z + 1 = 0$
- b) On pose dans toute la suite $\omega=e^{i\theta}\,$ où $\theta\in\mathbb{R}.$ Mettre les solutions de (E) sous la forme exponentielle.
- 2) Le plan complexe est muni d'un repère orthonormé (o, \vec{u}, \vec{v}) de sens direct On note M, M_1 et M_2 les points d'affixes respectives :

$$\omega=e^{i\theta}$$
 , $z_1=e^{i\left(-\theta-\frac{\pi}{3}\right)}$ et $z_2=e^{i\left(-\theta+\frac{\pi}{3}\right)}$

- a) Vérifier que : $\overline{z_1} = e^{2i\theta}z_2$
- b) Déterminer $\boldsymbol{\theta}$ dans chacun des cas suivants :
- M_1 et M_2 Sont symétriques par rapport à (o, \vec{u})
- \blacksquare M_1 et $\,M_2$ Sont symétriques par rapport à (o,\vec{v})
- c) Déterminer l'affixe du point I, milieu du segment $[M_1M_2]$
- d) Déterminer l'ensemble des points I lorsque θ vari dans $\mathbb R$
- e)Montrer que les vecteurs \overrightarrow{OI} et $\overline{M_1M_2}$ sont orthogonaux. En déduire une construction de M_1 et M_2 connaissant M sur le cercle trigonométrique avec $\theta \in \left|\frac{\pi}{4}, \frac{\pi}{2}\right|$.

Exercice N°3: (5 points)

Soit la suite (u_n) définie par $u_0=3$ et $\forall n \in \mathbb{N}$: $u_{n+1}=\sqrt{8+2u_n}$

- 1)a) Montrer que $\forall n \in \mathbb{N}: 0 < u_n < 4$
- b) Montrer que la suite (u_n) est croissante
- c)En déduire que (u_n) est convergente et calculer sa limite.
- 2) a) Montrer que $\forall n \in \mathbb{N}: 0 < 4 u_{n+1} \le \frac{1}{2}(4 u_n)$
- b) Montrer que $\forall n \in \mathbb{N}: 0 < 4 u_n \le \left(\frac{1}{2}\right)^n$ Retrouver la limite de (u_n) .
- 3) Pour n un entier naturel non nul, on pose : $S_n = \frac{1}{n} \sum_{k=0}^{n-1} u_k$
- a) Montrer que $\forall n \in \mathbb{N}: 4 \frac{2}{n} \left[1 \left(\frac{1}{2}\right)^n\right] \leq S_n < 4$
- b) Déterminer la limite de (S_n)

Exercice N°4: (6 points)

Soit $f_n(x) = x^5 + nx - 2n$ où $x \in \mathbb{R}$.

- 1)a)Montrer que $\,f_n$ est strictement croissante sur $\,\mathbb{R}$ et donner f_n (\mathbb{R}) .
- b) Montrer que l'équation $\,f_n(x)=0\,$ admet une unique solution x_n et que $x_n\in[0,\!2]$
- c)Calculer x_0 et x_1 et montrer que $\forall n \in \mathbb{N}^*$: $x_n \ge 1$
- 2)a)Montrer que $\forall x \in [0,2]$ et $\forall n \in \mathbb{N}: f_{n+1}(x) \leq f_n(x)$

En déduire que la suite (x_n) est croissante et qu'elle converge.

- b) Montrer que $\forall n \in \mathbb{N}: 2 \frac{32}{n} \le x_n \le 2$.En déduire la limite de (x_n) .
- 3) Soit la fonction g définie par : $\begin{cases} g(x) = -2 x^2 \sin\left(\frac{\pi}{x}\right) \text{ si } x < 0 \\ g(x) = f_1(x) \quad \text{si } x \ge 0 \end{cases}$
- a) Calculer $\lim_{x \to -\infty} g(x)$
- b) Montrer que pour tout $x < 0 : -x^2 2 \le g(x) \le x^2 2$
- c)Montrer que g est continue en 0.