Direction régionale Tunis2 Lycée Zahrouni 4 Math. 1

Devoir de contrôle n°1 Durée 2heures

Prof : M^r Riahi

2012 - 2011

Exercice 1 (3.75pts)

Répondre par Vrai ou Faux à chacune des questions suivantes

• Une réponse correcte justifier vaut 0.75pt

• Une réponse correcte sans justification vaut 0.5pt

• Une réponse incorrecte ou l'absence de réponse vaut Opt

1) L'ensemble des points M d'affixe z tel que : $z = 4 + e^{i\alpha}$, avec $\alpha \in \square$, est un cercle

2) Soit z un nombre complexe et d = z + 2i, on a : |d| = |z| + 2i

3) La fonction f définie par $\begin{cases} f(x) = \frac{\sqrt{2x^2 + 1} - 1}{x^2} & \text{si } x \neq 0 \\ f(0) = 0 \end{cases}$ est continue sur IR

4) Soient z_1 et z_2 les solutions de l'équation : $mz^2 + 2m^2z - 1 = 0$ ou m est un nombre complexe de module 2 On a alors : $|z_1 + z_2| = 4$

5) Le nombre complexe $u = \sqrt{2}e^{i\frac{\pi}{24}}$ est une racine sixième de $8e^{i\frac{\pi}{6}}$

Exercice 2 (5pts)

On considère la suite réelle (U_n) définie par : $\begin{cases} U_0 = 1 \\ U_{n+1} = U_n + 5 - \sqrt{{U_n}^2 + 9} \end{cases}; \quad n \in \square$

1) a) Montrer que pour tout entier naturel n on a : $0 \le U_n \le 4$

b) Montrer que la suite (U_n) est croissante

c) En déduire que la suite (Un) est convergente et calculer sa limite

2) Soit $V_n = \frac{1}{n^2} \sum_{k=0}^{k=n} U_k$. Montrer que $\lim_{n \to +\infty} V_n = 0$

3) On considère la suite réelle (W_n) définie par : $W_n = 2\sum_{k=0}^{k=n} U_{k+1} + n^2 V_n$

a) Montrer que pour tout entier naturel k tel que : $0 \le k \le n,$ on a : $U_{k+1} \ge \frac{3-U_k}{2}$

(On pourra remarquer que la suite (U_n) est croissante)

b) Déduire que $W_n \ge 3n+3$; puis déterminer $\lim_{n \to +\infty} W_n$

Exercice 3 (5pts)

1) le plan complexe \mathscr{P} est muni d'un repère orthonormé (O, \vec{u}, \vec{v}) . Soient A et B les points d'affixes respectives i et (-i). et (\mathscr{C}) le cercle de centre O et de rayon 1 Soit F l'application qui à tout point M d'affixe z non nul associe les points M' d'affixe respective $z' = \frac{z^2 + 1}{z}$; On désigne par M'' le symétrique de M par rapport à (O, \vec{u})

1) a) Déterminer F(A) et F(B)

b) Montrer que si z est un imaginaire pur alors z' est un imaginaire pur

- c) En déduire l'image de la droite (AB) par F
- 2) a) Montrer que si $z = e^{i\alpha}$; $\alpha \in \square$ alors $z' = 2\cos\alpha$

En déduire que si M est un point de cercle (8) alors M' décrit un segment qu'on précisera

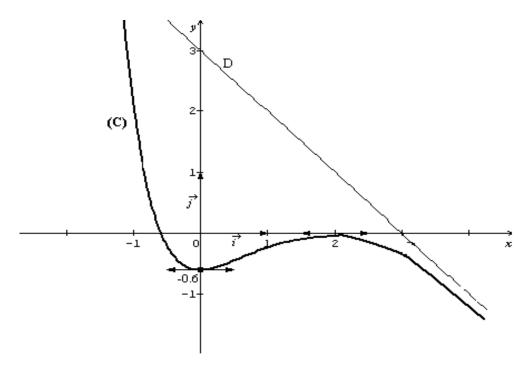
- b) Résoudre dans \Box l'équation : $z' = 2\cos\alpha$ (on donnera l'écriture exponentielle des solutions trouvées)
- 3) a) Vérifier que pour tout nombre complexe z non nul on a : $z'-z=\frac{1}{z}$
 - b) En déduire que $\overrightarrow{MM}' = \frac{1}{\overrightarrow{OM}}$ et que \overrightarrow{MM}' et \overrightarrow{OM}'' sont deux vecteurs colinéaires de même sens
 - c) Montre alors que si M est un point du cercle (%) alors OMM'M'' est un losange

Exercice 4 (6,25pts)

Le plan est muni d'un repère orthonormé (O, \vec{i}, \vec{j}) .

On a représentée ci-dessous la courbe représentative (C) d'une fonction f définie, continue et dérivable sur \(\Bar{} \) . On sait que la courbe (C) admet :

- Une asymptote D d'équation : y = 3 x au voisinage de $+\infty$
- Une branche parabolique de direction (O, \vec{j}) au voisinage de $-\infty$
- 1) En utilisant le graphique
 - a) Déterminer : f(0) ; f(-1) et $f([2,+\infty[)$
 - b) Déterminer: $\lim_{x \to -\infty} f(x)$; $\lim_{x \to +\infty} (f(x) + x 3)$ et $\lim_{x \to -\infty} \frac{fof(x)}{f(x)}$
 - c) Dresser le tableau de variation de f
- 2) Montrer que l'équation f(x) = 0 admet une unique solution α dans l'intervalle] 1,0 [
- 3) Soient les fonctions : $g(x) = \frac{1}{x^2}$ et h(x) = gof(x)
 - a) Déterminer le domaine de définition de la fonction h
 - b) Calculer $\lim_{x\to\alpha} h(x)$ et interpréter graphiquement le résultat obtenu.



BON TRAVAIL