Sauf de cer

1) COSINUS ET SINUS D'UN REEL

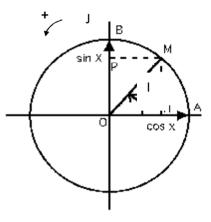
Sauf contre indication, l'unité utilisée est le radian.

Le plan orienté est muni d'un repère orthonormé direct ($O;\vec{i},\vec{j}$) ; on considère le cercle trigonométrique C de centre O.

A) DEFINITION

Pour tout réel x, il existe un point M unique du cercle trigonométrique C tel soit une mesure de $(\overrightarrow{OI}, \overrightarrow{OM})$.

- l'abscisse du point M est le **cosinus** de x (noté cos x)
- l'ordonnée du point M est le <u>sinus</u> de x (noté sin x)



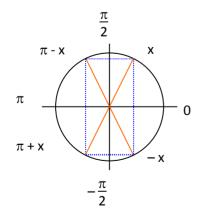
Propriétés:

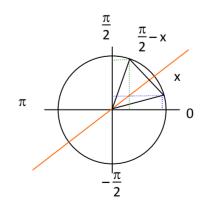
Pour tout réel x et tout entier relatif k,

$$-1 \le \cos x \le 1$$
 et $-1 \le \sin x \le 1$

$$+ \cos(x + 2k\pi) = \cos x \text{ et } \sin(x + 2k\pi) = \sin x$$

2) LIGNES TRIGONOMETRIQUES DES ANGLES ASSOCIES





 $\sin(-x) = -\sin x$

• $\sin(\pi - x) = \sin x$

= $\sin(\pi + x) = -\sin x$

 $= \sin\left(\frac{\pi}{2} - x\right) = \cos x$

 $\sin\left(\frac{\pi}{2} + x\right) = \cos x$

Activité 9 page 53.

3) TANGENTE D'UN REEL

A) DEFINITION

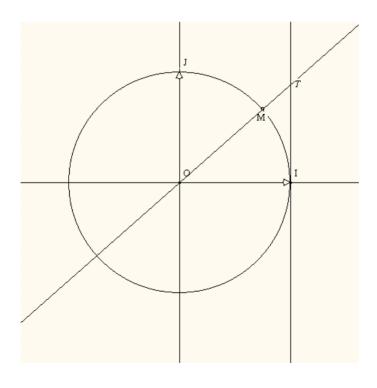
On appelle tangente de θ , le réel noté $\tan \theta$ et défini par $\tan \theta = \frac{\sin \theta}{\cos \theta}$, pour tout réel θ tel que

$$\theta \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$
.

Activité 2 page 54.

1)
$$M(\cos\theta, \sin\theta)$$
 et $T(1, y) \Rightarrow d\acute{e}t(\overrightarrow{OM}, \overrightarrow{OT}) = \begin{vmatrix} \cos\theta & 1 \\ \sin\theta & y \end{vmatrix} = y\cos\theta - \sin\theta$.

2)
$$\overrightarrow{OM}$$
 et \overrightarrow{OT} sont colinéaires \Rightarrow dét $\left(\overrightarrow{OM}, \overrightarrow{OT}\right) = 0 \Rightarrow y \cos \theta - \sin \theta = 0 \Rightarrow y = \frac{\sin \theta}{\cos \theta} = \tan \theta$



Activité 3 page 54.

ww.devoir@t.net

Propriétés:

Pour tout réel θ tel que $\theta \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$, on a :

$$+\tan(-\theta) = -\tan\theta$$
.

4) COSINUS ET SINUS D'UN ANGLE ORIENTE DE VECTEURS

A) DEFINITION

Soit \vec{u} et \vec{v} deux vecteurs du plan orienté.

Si x est une mesure en radian de l'angle orienté (\vec{u} , \vec{v}) , alors les autres mesures sont de la forme x + 2 k π (k

Or $\cos(x + 2k\pi) = \cos x$ et $\sin(x + 2k\pi) = \sin x$. On en déduit la définition suivante :

Le cosinus (resp. le sinus) de l'angle orienté de vecteurs (\vec{u} , \vec{v}) est le cosinus (resp. le sinus) de l'une quelco ses mesures.

On note
$$\cos(\vec{u}, \vec{v})$$
 et $\sin(\vec{u}, \vec{v})$.

B) LIEN ENTRE
$$\cos(\vec{u}, \vec{v})$$
 et $\cos(\widehat{AOB})$ lorsque $\overrightarrow{OA} = \vec{u}$ et $\overrightarrow{OB} = \vec{v}$

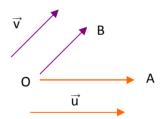
Notons α la mesure en radians de l'angle géométrique \widehat{AOB} formé par \vec{u} et \vec{v} , et notons x la mesure principale de

(
$$\vec{u}$$
 , \vec{v}).

On a $\alpha = |x|$. Deux cas se présentent :

- Si $x \ge 0$, |x| = x et par suite $\cos \alpha = \cos x$.
- Si $x \le 0$, |x| = -x, et $\cos \alpha = \cos (-x) = \cos x$

On a donc $\cos (\vec{u}, \vec{v}) = \cos (\widehat{AOB})$



Remarque:

Ce n'est pas vrai pour le sinus : $\sin(\widehat{AOB}) = |\sin(\overline{u}, \overline{v})|$

Activités 1 page 57 et 3 page 58.

<u>Propriétés :</u>

Soit \vec{u} et \vec{v} deux vecteurs non nuls, de composantes (x, y) et (x', y') dans une base orthonormée directe (\vec{i}, \vec{j}) .

Alors:
$$\cos(\vec{u}, \vec{v}) = \frac{xx' + yy'}{\sqrt{x^2 + y^2}\sqrt{x'^2 + y'^2}}$$
 et $\sin(\vec{u}, \vec{v}) = \frac{xy' - yx'}{\sqrt{x^2 + y^2}\sqrt{x'^2 + y'^2}}$

5) REPERAGE ET COORDONNEES POLAIRES

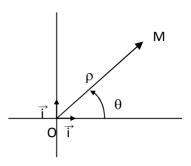
A) COORDONNEES POLAIRES D'UN POINT

Le plan est muni d'un repère orthonormé direct (O; i, j). Soit M un point du plan (distinct de O).

On appele **cooordonnées polaires** de M, tout couple de nombres réels (ρ , θ) tel que:

$$\rho = OM$$

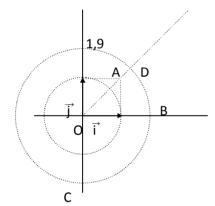
$$(\vec{i}, \vec{OM}) = \theta + 2 k \pi , k \in \mathbb{Z}$$



Remarque:

- ♣ O est appelé le pôle et [Ox) l'axe polaire.
- \downarrow On dit que r est le rayon polaire du point M et θ l'un de ses angles polaires.
- Un repère polaire étant choisi, à tout couple de coordonnées polaires correspond un unique point du plan.

Ex :



- Un couple de coordonnées polaires de A est :.....
- Un couple de coordonnées polaires de B est :
- Un couple de coordonnées polaires de C est :.....
- Un couple de coordonnées polaires de D est :.....

B) REPERE POLAIRE ET REPERE CARTESIEN

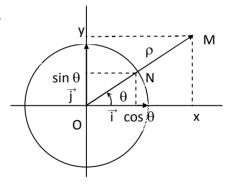
Le plan est muni d'un repère orthonormé direct $(O; \vec{1}, \vec{1})$. Un point M (distinct de O) a pour coordonnées cartésiennes (x; y) et pour coordonnées polaires (ρ , θ) . On a :

$$\rho = \sqrt{x^2 + y^2}$$

$$x = \rho \cos \theta$$

$$v = 0$$

$$y = \rho \sin \theta$$



Preuve:

Soit C le cercle trigonométrique de centre O.

La demi-droite [OM) coupe C en N.

N a pour coordonnées ($\cos \theta$; $\sin \theta$).

Or $\overrightarrow{OM} = \rho \overrightarrow{ON}$; on en déduit que \overrightarrow{OM} a pour coordonnées ($\rho \cos \theta$; $\rho \sin \theta$).

D'autre part : OM $^{2} = x^{2} + y^{2} = \rho^{2}$

6) FORMULES DE TRANSFORMATION

A) FORMULES D'ADDITION

Pour tout réel a et b :

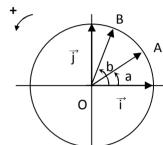
 $\cos (a-b) = \cos a \cos b + \sin a \sin b$; $\cos (a+b) = \cos a \cos b - \sin a \sin b$

 $\sin (a - b) = \sin a \cos b - \sin b \cos a$; $\sin (a + b) = \sin a \cos b + \sin b \cos a$

Preuve:

• Montrons que $\cos (a - b) = \cos a \cos b + \sin a \sin b$

On considère le cercle trigonométrique C de centre O muni du repère orthonormé direct (O ; \vec{i} , \vec{j}) .



On note A et B les points de C, définis par $(\vec{1}, \vec{OA}) = a$ et $(\vec{1}, \vec{OB}) = b$.

Les coordonnées de A et de B sont respectivement (cos a ; sin a) et (cos b ; sin b) .

D'autre part, d'après la relation de Chasles, on a : $(\overrightarrow{OA}, \overrightarrow{OB}) = (\overrightarrow{OA}, \overrightarrow{1}) + (\overrightarrow{1}, \overrightarrow{OB}) = -(\overrightarrow{1}, \overrightarrow{OA}) + (\overrightarrow{1}, \overrightarrow{OB}) = b - a$

Calculons alors de deux manières le produit scalaire OA . OB :

- avec les coordonnées : \overrightarrow{OA} . $\overrightarrow{OB} = \cos a \cos b + \sin a \sin b$
- en utilisant $\cos(\overrightarrow{OA}, \overrightarrow{OB})$: $\overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OA} \times \overrightarrow{OB} \times \cos(\overrightarrow{OA}, \overrightarrow{OB}) = \cos(b-a)$

Ainsi $\cos (a - b) = \cos a \cos b + \sin a \sin b$

• Montrons que $\cos (a + b) = \cos a \cos b - \sin a \sin b$

Il suffit d'écrire $\cos(a+b) = \cos(a-(-b))...$

• Montrons que $\sin (a + b) = \sin a \cos b + \sin b \cos a$

Il suffit d'écrire sin (a + b) = $\cos (\frac{\pi}{2} - (a + b)) = \cos ((\frac{\pi}{2} - a) - b) = ...$

Montrons que $\sin (a - b) = \sin a \cos b - \sin b \cos a$

Il suffit d'écrire $\sin (a - b) = \sin (a + (-b)) = ...$

Ex:

En remarquant que $\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$, on peut calculer les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

- $\cos \frac{\pi}{12} = \cos \frac{\pi}{3} \cos \frac{\pi}{4} + \sin \frac{\pi}{3} \sin \frac{\pi}{4} = \dots = \frac{\sqrt{6} + \sqrt{2}}{4}$
- $\sin \frac{\pi}{12} = \sin \frac{\pi}{3} \cos \frac{\pi}{4} \sin \frac{\pi}{4} \cos \frac{\pi}{3} = \dots = \frac{\sqrt{6} \sqrt{2}}{4}$

B) FORMULES DE DUPLICATION ET DE LINEARISATION

FORMULES DE DUPLICATION

FORMULES DE LINEARISATION

- $\sin 2 a = 2 \sin a \cos a$
- $\cos 2a = \cos^2 a \sin^2 a$ = $2 \cos^2 a - 1$ = $1 - 2 \sin^2 a$

- $\cos^2 a = \frac{1 + \cos 2 a}{2}$
- $\sin^2 a = \frac{1 \cos 2 a}{2}$

Preuve:

En prenant b = a, dans les formules précédentes on obtient $\sin 2 a = 2 \sin a \cos a$ et $\cos 2a = \cos^2 a - \sin^2 a$.

En utilisant la relation $\cos^2 a + \sin^2 a = 1$, on obtient $\cos^2 a = 2\cos^2 a - 1$ et $\cos^2 a = 1 - 2\sin^2 a$.

On en déduit les deux dernières formules.

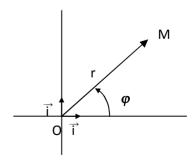
Activité 2 page 59.

<u>C</u>) FORMULE DE TRANSFORMATION DE $a \cos x + b \sin x$

Activité

Le plan est rapporté à un repère orthonormé direct (O ; \vec{i} , \vec{j}).

M est un point du plan ayant pour coordonnées cartésiennes (a,b)



dans le repère (O; $\vec{1}$, \vec{j}) et pour coordonnées polaires $[r, \varphi]$.

On sait que $\cos \varphi = \frac{a}{r}$; $\sin \varphi = \frac{b}{r}$; $r = \sqrt{a^2 + b^2}$.

Pour tout réel x, $a \cos x + b \sin x = r \cos \varphi \cos x + r \sin \varphi \sin x = r (\cos \varphi \cos x + \sin \varphi \sin x) = r \cos (x - \varphi)$.

$$a\cos x + b\sin x = r\cos(x - \varphi); \ ou \ r = \sqrt{a^2 + b^2}, \ \cos \varphi = \frac{a}{\sqrt{a^2 + b^2}} \ et \ \sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$$

Activité 4 page 60.

7) EQUATIONS ET INEQUATIONS TRIGONOMETRIQUES

A) EQUATION EN COSINUS

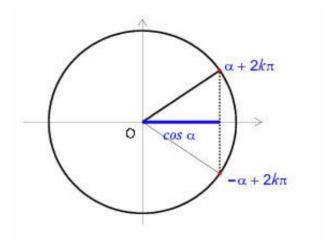
L'équation $\cos x = \cos \alpha$; où α est un réel fixé a pour solutions $\alpha + 2k\pi$ et $-\alpha + 2k\pi$; $k \in \mathbb{Z}$

L'équation $\cos x = 0$ a pour ensemble de solutions

$$\left\{\frac{\pi}{2} + 2k\pi \; ; \; -\frac{\pi}{2} + 2k\pi \; ; \; k \in \mathbb{Z}\right\}$$

Cet ensemble peut s'écrire aussi sous la forme

$$\left\{\frac{\boldsymbol{\pi}}{2}+\boldsymbol{k}\boldsymbol{\pi}\ ; \, \boldsymbol{k}\in\mathbb{Z}\right\}.$$

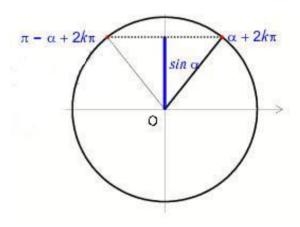


B) EQUATION EN SINUS

L'équation $\sin x = \sin \alpha$; où α est un réel fixé a pour solutions $\alpha + 2k\pi$ et $\pi - \alpha + 2k\pi$; $k \in \mathbb{Z}$

L'équation $\sin x = 0$ a pour ensemble de solutions $\{0 + 2k\pi \; ; \; \pi + 2k\pi \; ; \; k \in \mathbb{Z}\}$

Cet ensemble peut s'écrire aussi sous la forme $\{k\pi \; ; \; k \in \mathbb{Z}\}$.



Exemple

Pour résoudre l'équation $\cos x = \frac{1}{2}$ on pourra écrire :

$$\cos x = \frac{1}{2} \iff \cos x = \cos \frac{\pi}{3} \iff \begin{cases} x = \frac{\pi}{3} + 2k\pi \\ \text{ou} & \text{avec } k \in \mathbb{Z} \\ x = -\frac{\pi}{3} + 2k\pi \end{cases}$$

L'ensemble des solutions de l'équation $\cos x = \frac{1}{2}$ est donc $\left\{ -\frac{\pi}{3} + 2k\pi ; \frac{\pi}{3} + 2k\pi \text{ avec } k \in \mathbb{Z} \right\}$.

A) EQUATION EN TANGENTE

L'équation $\tan x = \tan \alpha$; où α est un réel fixé différent de $\frac{\pi}{2} + k\pi$ a pour solutions $\alpha + 2k\pi$ et $\pi + \alpha + 2k\pi$; $k \in \mathbb{Z}$.

Cet ensemble peut s'écrire aussi sous la forme $\{\alpha + k\pi : k \in \mathbb{Z}\}$.

Exercices 18, 19, 20, 21, 22, 23, 24, 25, 26 page 67.