I. Approche de la notion :

Déterminer le domaine de définition et tracer la courbe représentative de la fonction f dans chacun des cas suivants :

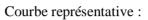
$$\underline{1\text{\'er cas}}: f(x) = 2x + 1.$$

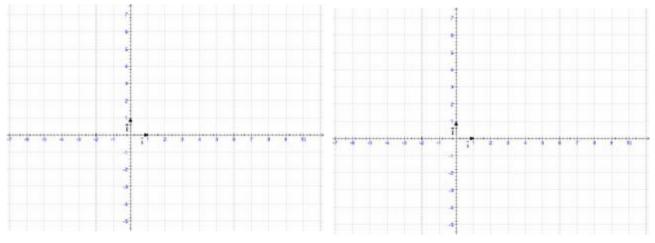
$$\underline{2^{\text{ème}} \text{ cas}}$$
: $f(x) = |x|$.

$$D_f =$$

$$D_f =$$

Courbe représentative :





$$\underline{3^{\text{ème}} \text{ cas : } f(x) = \begin{cases} 2x+1 & \text{si } x \ge 0\\ 2x-1 & \text{si } x < 0 \end{cases}$$

$$\underline{4}^{\text{ème}} \text{ cas} : f(x) = E(x)$$
 appelée fonction partie

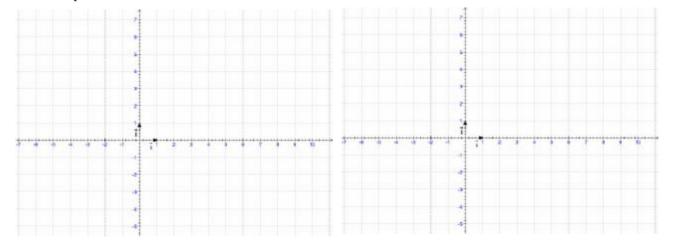
 $D_f =$

$$D_f = \mathbb{R}$$
.

entière.

Courbe représentative :

Courbe représentative sur [-1,3] :



<u>Remarque</u>: Si x est un nombre réel, quelconque, il existe un entier relatif n tel que $n \le x < n+1$.

Cet entier relatif s'appelle la partie entière de x que nous désignerons par E(x).

Exemple : si $-1 \le x < 0$ alors E(x) = -1.

ww.devoir@t.net

Commentaires:

• Pour les deux premiers cas, la fonction est représentée par un trait continu (obtenu sans lâcher le crayon). La fonction considérée est dite une fonction **continue** en tout point de son ensemble de définition.

Pour les deux derniers cas, la fonction est elle continue en tout point de son domaine de définition ?

.....

II. Fonction continue en un point :

<u>Définition</u>: Soient I un intervalle, f une fonction définie sur I et $a \in I$.

On dit que f est continue en a lors que :

* quelque soit l'intervalle ouvert J centré en f(a), il existe un intervalle ouvert K centré en a tel que pour tout x de I : $x \in K \Rightarrow f(x) \in J$.

* quel que soit $\beta > 0$, il existe un nombre $\alpha > 0$ tel que pour tout x de I: $|x - a| < \alpha \Rightarrow |f(x) - f(a)| < \beta$.

Exemple:

Reprenons l'exemple du 1ér cas f(x) = 2x + 1. Montrons que f est continue en 1.

La figure nous montre que f(x) sera « voisin » de f(1) = 3 que l'on voudra, si l'on choisit x suffisamment « voisin » de1.

quel que soit $\beta > 0$ trouver $\alpha > 0$ tel que :

$$|x-1| < \alpha \Rightarrow |f(x)-3| < \beta$$
.

Nous cherchons à avoir $|f(x)-3| < \beta$.

Pour tout x, on a:

$$|f(x)-3| = |2x+1-3| = |2x-2| = 2|x-1| < \beta$$

Signifie
$$|x-1| < \frac{\beta}{2}$$
, il suffit de prendre $\alpha = \frac{\beta}{2}$.

Pour l'exemple f(x) = E(x):

Choisissons β tel que $0 < \beta < 1$, quel que soit l'intervalle

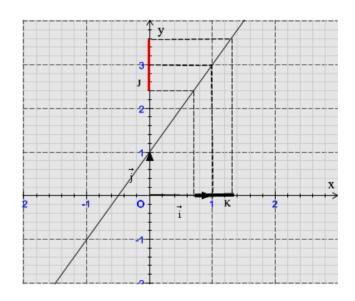
$$K =]2 - \alpha, 2 + \alpha[, (\alpha > 0), \text{ de centre 2}, f(K) \text{ contient 1}]$$

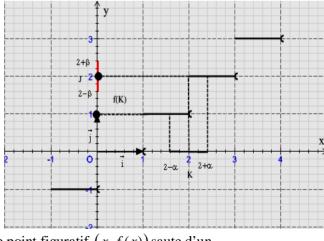
qui est extérieur à $J =]f(2) - \beta$, $f(2) + \beta$ [ce qui signifie que

f est discontinue au point $x_0 = 2$. Ce résultat est valable pour

toutes les valeurs entières de x.

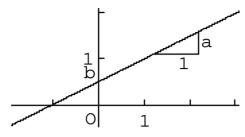
Graphiquement : chaque fois que x passe une valeur entière, le point figuratif (x, f(x)) saute d'un segment au segment suivant.



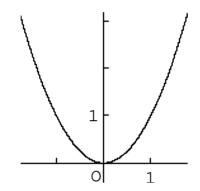


III. Continuité des fonctions usuelles :

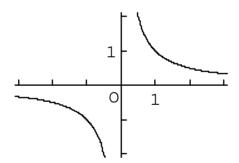
Toute fonction affine $x \mapsto ax + b$ est continue en tout réel x_0 .



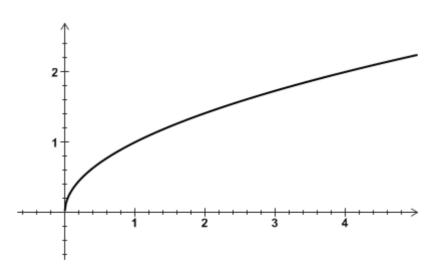
La fonction carrée $x \mapsto x^2$ est continue en tout réel x_0 .



La fonction inverse $x \mapsto \frac{1}{x}$ est continue en tout réel non nul.



La fonction $x \mapsto \sqrt{x}$ est continue en tout réel positif x_0 .



Les fonctions rationnelles sont continues en tout réel où elles sont définies.

Activité 2 page 24.

Soit f une fonction définie sur un intervalle ouvert I et x_0 un réel de I. Si f est continue en x_0 , alors |f| est continue en x_0 .

Activité 2 page 25.

IV. Opérations sur les fonctions continues :

Théorème:

Soit f et g deux fonctions définies sur un intervalle ouvert I. Soit x_0 un réel de I et k un réel.

- Si f et g sont continues en x_0 alors les fonctions f + g, fg, et kf sont continues en x_0 .
- Si f est continue en x_0 et si $f(x_0) \neq 0$ alors le fontion $\frac{1}{f}$ est continue en x_0 .
- Si f et g sont continues en x_0 et si $g(x_0) \neq 0$ alors la fonction $\frac{f}{g}$ est continue en x_0 .

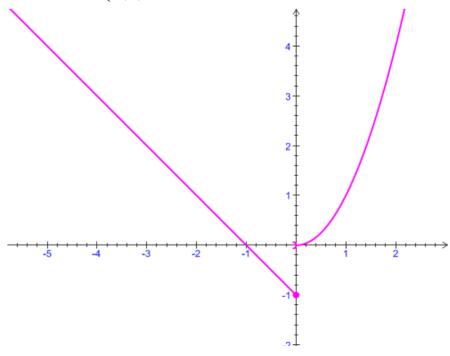
Activité 1 page 25.

Soit f une fonction définie et positive sur un intervalle ouvert I et x_0 un réel de I. Si f est continue en x_0 , alors la fonction \sqrt{f} est continue en x_0 .

Activité 3 page 26.

V. Continuité à droite, continuité à gauche :

Soit f la fonction définie sur \mathbb{R} par : $\begin{cases} f(x) = x^2 & \text{si } x > 0 \\ f(x) = -x - 1 & \text{si } x \le 0 \end{cases}$



- + f(0) = -1.
- Si x devient de plus en plus proche de 0 à gauche (par des valeurs négatives), f(x) devient de plus en plus proche de f(0) = -1. On dit que f est continue à gauche en 0.
- ♣ Si x devient de plus en plus proche de 0 à droite (par des valeurs supérieures), f(x) devient de plus en proche de 0 qui est différent de f(0). On dit que f n'est pas continue à droite en 0 ou que f est discontinue à droite en 0.

Dans ce cas f n'est pas continue en 0.

Théorème

f est continue en x_0 , si et seulement si, f est continue à droite et à gauche en x_0 .

VI. Continuité sur un intervalle :

♣ Soient a et b finis ou infinis.

Une fonction définie sur un intervalle]a,b[est dite continue sur]a,b[si elle est continue en tout réel de]a,b[.

♣ Soit a fini ou infini et b un réel.

Une fonction définie sur un intervalle a,b est dite continue sur a,b si elle est continue en tout réel de a,b et continue à gauche en b.

♣ Soit a un réel et b fini ou infini.

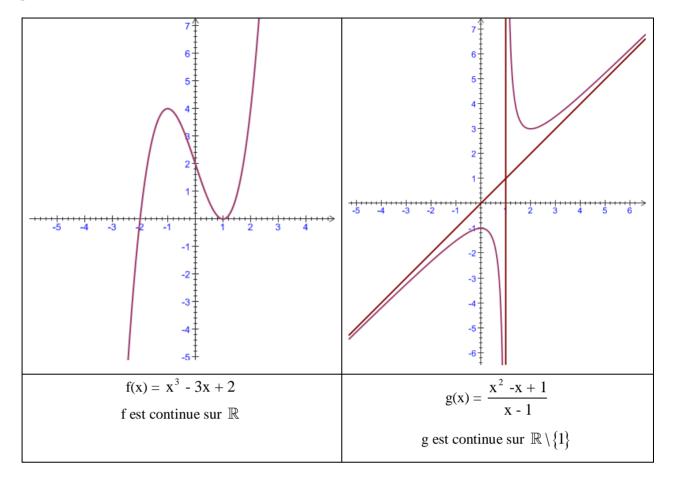
Une fonction définie sur un intervalle [a,b[est dite continue sur [a,b[si elle est continue en tout réel de]a,b[et continue à droite en a.

♣ Soient a et b deux réels.

Une fonction définie sur un intervalle [a,b] est dite continue sur [a,b] si elle est continue en tout réel de [a,b], continue à droite en a et continue à gauche en b.

- \bot Toute fonction polynôme est continue sur $\mathbb R$.
- ♣ Toute fonction rationnelle est continue sur son ensemble de définition.

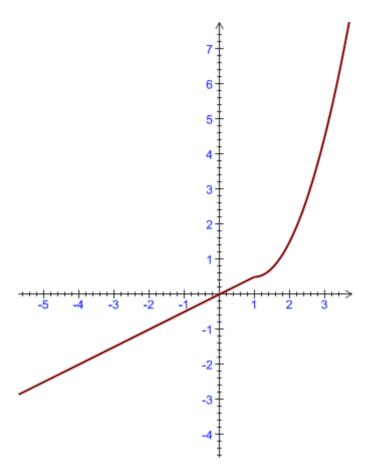
Exemples



Activité 1 page 29.

$$\begin{cases} g(x) = (x-1)^2 + 0.5 \text{ si } x \ge 1 \\ g|_{J=\infty,I[} \text{ est une fonction linéaire} \Leftrightarrow \begin{cases} g(x) = (x-1)^2 + 0.5 \text{ si } x \ge 1 \\ g(x) = ax & \text{si } x < 1 \\ g \text{ est continue sur } \mathbb{R} \end{cases}$$

1) Représentation graphique de g :



2) g est continue sur \mathbb{R} , en particulier en 1 donc si x devient de plus en proche de 1 (à gauche ou à droite), g(x) devient de plus en proche de g(1) = 0.5.

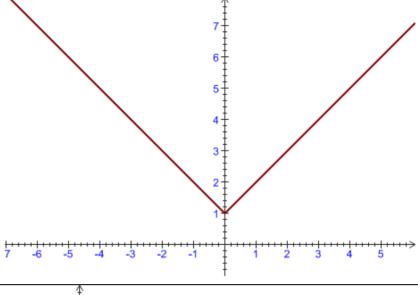
En tendant vers 1 à gauche, g(x) tend vers a donc a = 0.5

$$\label{eq:defDouble} D\text{'où } \begin{cases} g(x) = \left(x\text{-}1\right)^2 + 0.5 \text{ si } x \ \geq \ 1 \\ \\ g(x) = \frac{1}{2}x & \text{si } x < 1 \end{cases}.$$

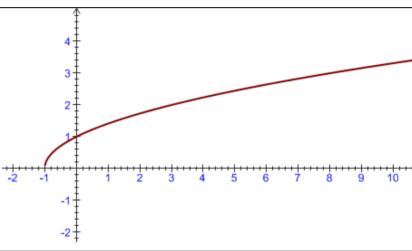
1) $f: x \mapsto |x| + 1$

f est la somme de deux fonctions continues sur

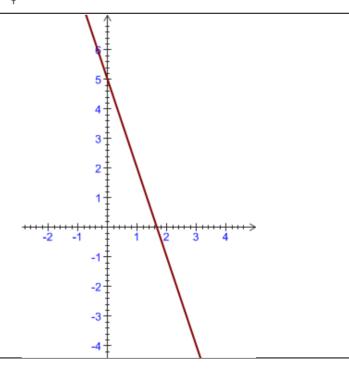
 \mathbb{R} donc f est continue sur \mathbb{R}



2) $f: x \mapsto \sqrt{x+1}$ $\left(x \xrightarrow{u} x + 1\right)$ est continue et positive sur $\left[-1, +\infty\right[$ donc $f = \sqrt{u}$ est continue sur $\left[-1, +\infty\right[$ en particulier sur $\left[0, +1\right]$.

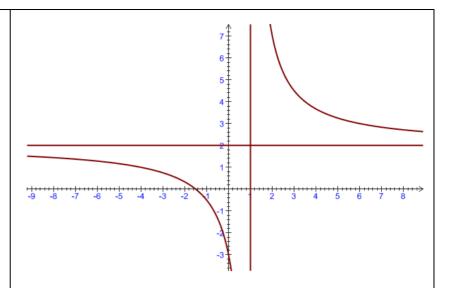


3) $f: x \mapsto -3x + 5$ f est une fonction polynôme continue sur \mathbb{R} en particulier sur]-0.1; 10].



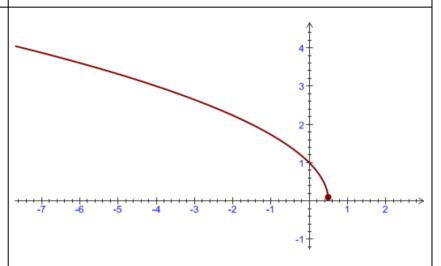
4)	$f: x \mapsto$	2x + 3
		x - 1

f est une fonction rationnelle continue sur son domaine de définition $\mathbb{R}\setminus\{1\}$ en particulier sur [-1 , 0].

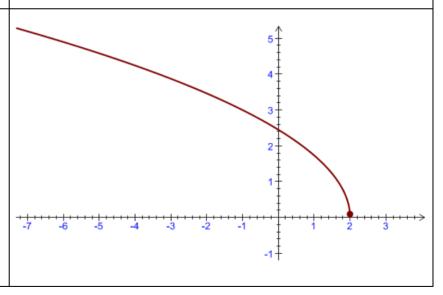


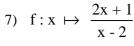
5) $f: x \mapsto \sqrt{-2x+1}$ $\left(x \xrightarrow{u} -2x+1\right)$ est continue et positive sur $\left]-\infty, \frac{1}{2}\right]$ donc $f = \sqrt{u}$ est

continue sur $\left]-\infty, \frac{1}{2}\right]$ en particulier sur] -0.1 ; 0.3].

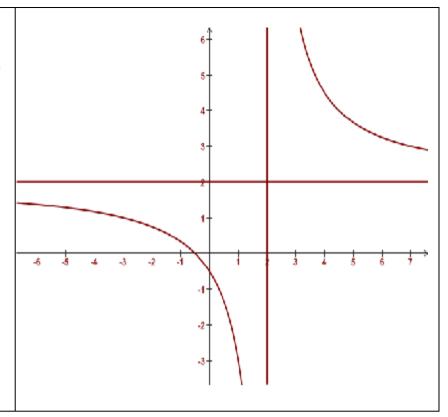


6) $f: x \mapsto \sqrt{-3x+6}$ $\left(x \xrightarrow{u} -3x+6\right)$ est continue et positive sur $\left]-\infty,2\right]$ donc $f=\sqrt{u}$ est continue sur $\left]-\infty,2\right]$.





f est une fonction rationnelle continue sur son domaine de définition $\mathbb{R} \setminus \{2\}$ en particulier sur] -2; 0 [.



VII. Image d'un intervalle par une fonction continue :

Activité 1 page 30.

$$f: x \mapsto (x-1)^2$$
.

- 1) f est une fonction polynôme continue sur $\mathbb R$.
- 2) $f([2,+\infty[)=[1,+\infty[;f(]-0.2;0])=[1;1.44[$ $\{f(x);-0.5 \le x \text{ et } x \ne 2\}=[0,+\infty[.$

3)
$$x \in [3,4] \Leftrightarrow 3 \le x \le 4 \Leftrightarrow 2 \le x - 1 \le 3 \Leftrightarrow 4 \le (x - 1)^2 \le 9 \Leftrightarrow f(x) \in [4,9]$$

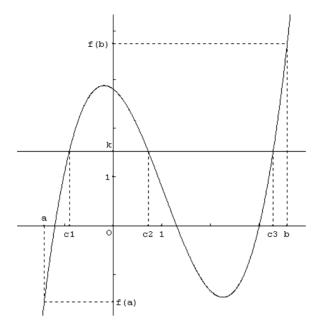
4) L'équation f(x) = 5 admet d'après le graphique deux solutions : une solution α comprise entre -2 et -1 et une solution β comprise entre 3 et 4.

Théorème

L'image d'un intervalle par une fonction continue est un intervalle.

Théorème des valeurs intermédiaires

Théorème 1: Si une fonction f est continue sur un intervalle fermé [a;b], et si k est un réel quelconque situé entre f(a) et f(b) (ces deux valeurs comprises), alors il existe au moins un nombre c dans [a;b] tel que f(c) = k.



<u>Théorème 2</u>: Si une fonction f est continue et strictement monotone sur un intervalle fermé [a;b], alors pour tout réel k situé entre f(a) et f(b) (ces deux valeurs comprises), l'équation f(x) = k admet une **solution unique**.