Equations et inéquations du premier degré

I) Equation du premier degré à une inconnue

1) définitions

Définition 1:

Une équation à une inconnue est une égalité comprenant un seul nombre inconnu désigné par une lettre.

Exemple:

L'égalité : 3x + 2 = 7x + 1 est une équation du premier degré à une inconnue. Le nombre inconnu est désigné par la lettre x

Définition 2:

Résoudre une équation dont l'inconnue est le nombre x c'est trouver toutes les valeurs possibles du nombre x qui vérifient l'égalité. Chaque valeur de x est une solution de cette équation.

Exemple : Résoudre l'équation x - 2 = 7

Comme 9 – 2 = 7 La valeur de x qui vérifie l'égalité est 9.

L'équation x - 2 = 7 a une solution qui est 9

2) Règles: 2

- Si on ajoute ou retranche un même nombre aux deux membres d'une égalité
- Si on multiplie ou divise un même nombre aux deux membres d'une égalité :

On ne change pas les solutions de l'équation

3) Résolutions des équations de base :

Pour tout nombre a et b

<u>a) On peut retrancher le nombre a aux deux membres d'une égalité pour « isoler le nombre x »</u>

```
Si x + a = b alors x + a - a = b - a donc x = b - a
```

Exemple:

```
x + 3 = 9 alors x = 9 - 3 et donc x = 6
```

L'équation x + 3 = 9 a une solution qui est 6

b) On peut ajouter le nombre a aux deux membres d'une égalité pour « isoler le nombre x »

Si
$$x - a = b$$
 alors $x - a + a = b + a$ donc $x = b + a$

Exemple:

$$x - 9 = 7$$
 alors $x = 7 + 9$ et donc $x = 16$

L'équation x - 9 = 7 a une solution qui est 16

c) On peut diviser le nombre a aux deux membres d'une égalité pour « isoler le nombre x »

Si
$$ax = b$$
 alors $\frac{a}{a} x = \frac{b}{a} \operatorname{donc} x = \frac{b}{a}$

Exemple:

$$7x = 14$$
 alors $x = \frac{14}{7} = 2$ et donc $x = 2$

L'équation 7x = 14 a une solution qui est 2

<u>d On peut multiplier le nombre a aux deux membres d'une égalité pour « isoler le nombre x »</u>

Si
$$\frac{x}{a} = b$$
 (a \neq 0) alors $\frac{x}{a} \times a = b \times a$ donc $x = b \times a$

Exemple:

$$\frac{x}{3}$$
 = 5 alors $x = 3 \times 5$ et donc $x = 15$

L'équation $\frac{x}{3} = 5$ a une solution qui est 15

e) On peut multiplier par le nombre x (x≠ 0) les deux membres d'une égalité

Si
$$\frac{a}{x} = b$$
 ($x \neq 0$) alors $\frac{a}{x} \times x = b \times x$ donc $bx = a$ et puis $x = \frac{a}{b}$

Exemple:

$$\frac{7}{x} = 2$$
 alors $2x = 7$ et donc $x = \frac{7}{2}$

L'équation $\frac{7}{x} = 2$ a une solution qui est $\frac{7}{2}$ ou 3,5

f) Méthode pour résoudre une équation du premier degré à une inconnue plus complexe.

Exemple:

Résoudre l'équation suivante :

$$6x + 8 = 4x - 15$$

On a :
$$6x - 4x + 8 = 4x - 4x - 15$$

1) On regroupe du même côté de l'égalité les termes en x voir **a**) et **b**) ci-dessus

On obtient :
$$2x + 8 = -15$$

2) On réduit l'expression

On a alors
$$:2x + 8 - 8 = -15 - 8$$

3) On regroupe les nombres constants de l'autre côté de l'égalité voir a) et b) ci-dessus

On a alors :
$$2x = -23$$

4) On réduit l'expression

alors
$$\frac{2x}{2} = -\frac{23}{2}$$

5) On divise par 2 les deux membres de l'égalité, pour isoler le nombre x voir \mathbf{c}) ci-dessus

on a donc
$$x = -\frac{23}{2} = -11,5$$

6) On simplifie

La solution de l'équation
$$6x + 8 = 4x - 15$$
 est -11,5

6) On n'oublie pas de conclure.

II) Equation produit nul

1) Définition:

Une équation produit nul est une équation dont l'un des membres est un produit de facteurs du premier degré et l'autre membre est égal à zéro

Exemple:

(5x + 3)(3x - 2) = 0 est une équation produit nul

2) Propriété:

Si l'un des facteurs d'un produit est nul alors ce produit est nul

Donc, pour tout nombre réel a nous pouvons écrire : $0 \times a = 0$ ou $a \times 0 = 0$

3) Propriété Réciproque:

Si un produit est nul alors au moins un de ses facteurs est nul

Donc, si $a \times b = 0$ alors a = 0 ou b = 0

D'une manière générale :

 $\operatorname{si}(ax+b)(cx+d)=0$ on a alors (ax+b)=0 ou (cx+d)=0

Exemple:

Résoudre l'équation (9x - 7)(5x + 9) = 0

C'est une équation produit (pour la résoudre on utilise la propriété réciproque) :

Lorsqu'un produit est nul alors un de ses facteurs est nul :

$$9x - 7 = 0$$
 ou $5x + 9 = 0$

$$9x = 7$$
 ou $5x = -9$

 $x = \frac{7}{9}$ ou $x = -\frac{9}{5}$ L'équation produit (9x - 7)(5x + 9) = 0 admet deux solutions $\frac{7}{9}$ et $-\frac{9}{5}$

III) Equation du type : $x^2=a$

a) Définition 1 :

Si a < 0 l'équation $x^2 = a$ n'a pas de solution

Exemples:

L'équation $x^2 = -2$ n'a pas de solution puisque $x^2 \ge 0$ et -2 < 0

Un nombre positif ne peut être égal à un nombre strictement négatif

b) Définition 2 :

Si a = 0, l'équation $x^2 = a$ a une seule solution x = 0

L'équation $x^2 = 0$ a une solution qui est 0

c) Définition 3:

Si a > 0, l'équation $x^2 = a$ admet deux solutions : \sqrt{a} et $-\sqrt{a}$

Exemples:

 $x^2=49$ a pour solutions $x=\sqrt{49}$ et $x=-\sqrt{49}$ soit x=7 et x=-7 **L'équation** $x^2=49$ a deux solutions : 7 et - 7

IV) Inéquation du 1 er degré à une inconnue

1) Inégalités

a) Inégalités au sens large

- $a \le b$ signifie que a est inférieur à b ou que a est égale à b, soit $a \le b$ signifie que a < b ou a = b
- $a \ge b$ signifie que a est supérieur à b ou que a est égale à b,

soit $a \ge b$ signifie que a > b ou a = b

b) Inégalités et opérations

Propriété 1 :

Si on ajoute ou soustrait un même nombre aux deux membres d'une inégalité, on ne change pas le sens de cette inégalité

Ainsi quelque soit a, b et c

Si $a \le b$ alors $a + c \le b + c$ Si a < b alors a + c < b + cSi $a \ge b$ alors $a + c \ge b + c$ Si a > b alors a + c > b + c

Exemples : Si $x \le 7$ alors $x + 3 \le 7 + 3$ soit $x + 3 \le 10$

De même : Si x > 5 alors x - 8 > 5 - 8 soit x - 8 > -3

Propriété 2 :

Si on multiplie ou divise les deux membres d'une inégalité par un même nombre positif on ne change pas le sens de cette inégalité

Ainsi quelque soit a, b et c

Si c > 0 et $a \le b$ alors $ac \le bc$

Exemple: 7 > 4 alors $7 \times 3 > 4 \times 3$ soit 21 > 12

Si on multiplie ou divise les deux membres d'une inégalité par un même nombre négatif on change le sens de l'inégalité

Ainsi quelque soit a, b et c

```
Si c < 0 et a \le b alors ac \ge bc (Il faut bien faire attention au sens de l'inégalité!)
```

Exemple: 7 > 4 alors $7 \times (-3) < 4 \times (-3)$ soit -21 < -12

Exemples récapitulatifs :

```
Si a \ge 4 alors on peut écrire 5a \ge 20 ou par exemple -2a \le -8 ou encore 10 \ a \ge 40 et -10 \ a \le -40 ou encore -a \le -4 et 8a \ge 32
```

2) Inéquations

a) définitions

Définition 1:

Une inéquation à une inconnue est une inégalité comprenant un nombre inconnu désigné par une lettre.

Exemple:

L'inégalité : 3x + 2 < 7x + 1 est une inéquation à une inconnue. Le nombre inconnu est désigné par la lettre x

Définition 2:

Résoudre une inéquation dont l'inconnue est le nombre x c'est trouver toutes les valeurs possibles du nombre x qui vérifient l'inégalité.

Exemple:

Les solutions de l'inéquation $9x + 5 \ge 6x + 1$ sont tous les nombres x vérifiant cette inégalité

Méthode pour résoudre une inéquation :

Exemple 1

Résoudre $4x \le 16$

Exemple 2

Résoudre -4x < 16

$$4x \leq 16$$

On isole x en divisant les deux membres par 4

$$-4x < 16$$

On isole le x en divisant les deux membres par - 4

(4 > 0 on garde le sens de l'inégalité)

$$\frac{4x}{4} \le \frac{16}{4}$$

(-4 < 0 on change le sens de l'inégalité)

$$\frac{-4x}{-4} > \frac{16}{-4}$$

Soit
$$x \le \frac{16}{4}$$
 donc $x \le 4$.

Soit
$$x > -\frac{16}{4}$$
 donc $x > -4$.

Tous les nombres inférieurs ou égale à 4 sont solution de l'inéquation $4x \le 16$

Représentation des solutions sur une droite graduée :

Tous les nombres supérieurs à - 4 sont solution de l'inéquation -4x < 16

Représentation des solutions sur une droite graduée :

4 fait partie de l'ensemble des solutions

- 4 ne fait pas partie de l'ensemble des solutions

IV) Résolution d'un problème du 1er degré (problème se ramenant à une équation ou une inéquation)

La résolution d'un problème du premier degré se fait en cinq étapes :

- Choix de l'inconnue
- Mise en équation ou inéquation du problème
- Résolution de l'équation ou de l'inéquation
- Vérification du résultat
- Interprétation du résultat et conclusion

Exemple:

Une mère de quarante cinq ans a une fille de 13 ans.

Dans combien d'année l'âge de la fille sera la moitié de l'âge de sa mère ?

1) Choix de l'inconnue :

On commence par nommer l'inconnue que l'on cherche :

Soit x le nombre d'années cherché

2) Mise en équation du problème :

L'âge de la mère après ces x années sera de 45 + x

L'âge de la fille après ces x années sera de 13 + x

et l'âge de la fille sera la moitié de celui de sa mère on a donc :

$$13 + x = \frac{45 + x}{2}$$

3) Résolution de l'équation :

$$2 \times (13 + x) = 45 + x$$

 $26 + 2x = 45 + x$
 $2x - x = 45 - 26$
 $x = 19$

4) Vérification du résultat :

x = 19Dans 19 ans 13 + 19 = 32l'âge de la fille sera de 32 ans, 45 + 19 = 64L'âge de la mère sera de 64 ans L'âge de la fille sera bien la moitié de l'âge de la mère

5) Conclusion, interprétation du résultat :

Dans 19 ans l'âge de la fille sera la moitié de celui de sa mère.