Fiche de cours GENERALITES SUR L

2^{ème} info ES FONCT maths au lycee *** ali abir

Site Web: http://maths-akir.midiblogs.com/

Vocabulaire

Soit D un ensemble de R

Définir une fonction f sur D, c'est associer à chaque réel x de D un unique réel noté f(x).

On écrit : $f: x \mapsto f(x)$ (on lit : « f est la fonction qui à x associe f de x »)

D est l'ensemble de définition de la fonction f.

x est la variable.

f(x) est l'image de x par f.

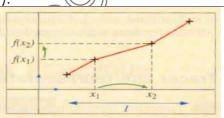
Si y = f(x), on dit que x est un antécédent de y par f.

Représentation graphique

Un repère du plan étant choisi, on appelle courbe représentative d'une fonction f, notée C_f , l'ensemble des points M de coordonnées (x; f(x)) où $x \in D$.

Dire « M(x; y) appartient à la courbe représentative de f » équivaut à dire « x appartient à D et y = f(x) ».

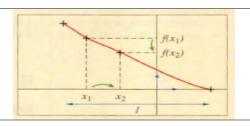
On dit que la courbe a pour équation y = f(x).


Sens de variations

I est un intervalle contenu dans l'ensemble de définition D de la fonction f.

Dire que f est strictement croissante sur I signifie que pour tous réels x_1 et x_2 de I :

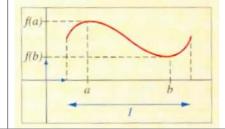
 $Si \ x_1 < x_2 \ alors \ f(x_1) < f(x_2).$


(Une fonction croissante conserve l'ordre.)

Dire que f est strictement décroissante sur I signifie que pour tous réels x_1 et x_2 de I:

 $Si \ x_1 < x_2 \ alors \ f(x_1) > f(x_2).$

(Une fonction décroissante change l'ordre.)



Pour une fonction croissante ou décroissante, on remplace les inégalités strictes de $f(x_1)$ et $f(x_2)$.par des inégalités larges.

Dire que f est constante sur I signifie que pour tous réels x_1 et x_2 de I, on a $f(x_1) = f(x_2)$. Une fonction monotone sur I est une fonction soit croissante sur I, soit décroissante sur I.

Maximum - Minimum

M est le maximum de f sur I signifie que M est la plus grande valeur prise par f sur I: Pour tout réel x de D $f(x) \le M = f(a)$.

m est le minimum de f sur I signifie que m est la plus petite valeur prise par f sur I: Pour tout réel x de I $f(x) \ge m = f(b)$.

Parité Fonction paire

On dit que f est paire si pour tout x de D, on $a:(-x) \in D$ et f(-x) = f(x).

Soit C la courbe représentative d'une fonction f.

C est symétrique par rapport à l'axe des ordonnées.

Fonction impaire

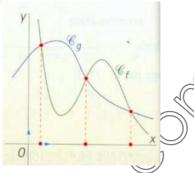
g est impaire si pour tout x de D on $a : -x \in D$ et g(-x) = -g(x).

Soit C la courbe représentative d'une fonction g.

C est symétrique par rapport à O.

Résolution d'une équation :

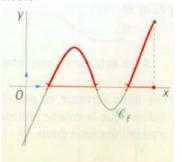
Résolution f(x) = k.


On trace la droite d'équation y = k et on lit les abscisses des points d'intersection avec la courbe.

$$S = \{x_1, x_2\}$$

Résolution de f(x) = g(x).

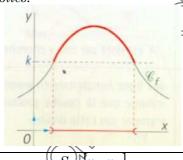
On trace les deux courbes C_f et C_g et on lit les abscisses des points d'intersection.



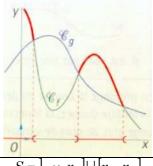
$$S = \{x_1, x_2, x_3\} \bigcirc$$

Résolution d'une inéquation

Résolution $f(x) \ge 0$.


On lit les intervalles sur lesquels la courbe est au-dessus des axes des abscisses.

 $S = [x_1, x_2] \cup [x_3, +\infty]$


Résolution $f(x) \ge k$.

On trace la droite d'équation y = ket on lit les intervalles sur lesquels $la\ courbe\ est\ au\text{-}dessus\ de\ cette \cite{courbe}$ droites.

Resolution de $f(x) \ge g(x)$.

On trace les deux courbes C_f et C_g et on lit les intervalles sur lesquels C_f est au-dessus de C_g .

 $S = \left[-\infty, x_1 \right] \cup \left[x_2, x_3 \right]$

