Série

EXERCICEI: (2,5 points)

Calculer la masse molaire moléculaire des corps suivants :

Acide éthanoïque	Hemi-pentoxyde	Trioxyde de	Oxyde de fer III	Benzène
	de phosphore	soufre		
$C_2H_4O_2$	P_2O_5	SO_3	Fe_2O_3	C_6H_6

On donne : $M_H = 1 \text{ g.mol}^{-1}$, $M_C = 12 \text{ g.mol}^{-1}$, $M_O = 16 \text{ g.mol}^{-1}$, $M_P = 31 \text{ g.mol}^{-1}$, $M_S = 32 \text{ g.mol}^{-1}$, $M_{Fe} = 56 \text{ g.mol}^{-1}$.

EXERCICEII: (3,5 points)

- 1- Calculer la quantité de matière correspondant à **12,8** g de méthane (**CH4**) gazeux.
- 2- Quel est le volume occupé par cette quantité ?

On donne : $M_H = 1$ g.mol⁻¹, $M_C = 12$ g.mol⁻¹. Volume molaire des gaz : $V_M = 24$ L.mol⁻¹.

A-CHIMIE: (8 points)

On donne : $M_{Al}=27~g.mol^{-1}$, $M_H=1~g.mol^{-1}$, $M_C=12~g.mol^{-1}$, $M_O=16~g.mol^{-1}$. Volume molaire des gaz $V_m=22,4~L.mol^{-1}$, $N=6,02.10^{23}$.

EXERCICE I: (1 pt + 2 pts).

- 1- Calculer la masse molaire de l'oxyde d'aluminium (Al₂O₃)
- 2- Quelle est masse d'oxyde d'aluminium qui contient **2,408.10**²² molécules d'oxyde d'aluminium ?

EXERCICE II : (1,5 pts + 1 pt).

La masse de $120~cm^3$ de diéthyloxyde ($C_4H_{10}O$) est 85,2~g .

- 1- Calculer le volume molaire de ce composé.
- 2- Calculer la quantité de matière qui forme 1 litre de diéthyloxyde.

EXERCICE III : (1,5 pts + 1 pt)

- 1- Calculer le volume occupé par **5,5 g** de dioxyde de carbone.
- 2- Quelle masse de méthane ($\mathbf{CH_4}$) occupe le même volume ?

EXERCICE II:

On donne la masse volumique de l'eau à 20° C $\rho_{eau} = 1$ g.cm⁻³. Trois corps solides **A**, **B** et **C** sont constitués de métaux différents.

1) Compléter le tableau ci-dessous.

	A	В	С
Masse (g)	356		533
Volume (cm ³)		70	82
Densité	8,9	11,3	

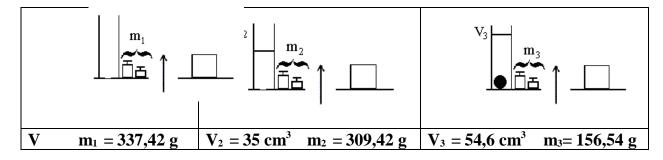
2) A l'aide du métal constituant le solide **A** on fabrique un objet de masse **m** = 178 g

et de volume $V = 28 \text{ cm}^3$.

EXERCICEI: (2-1,5)

On donne : Volume molaire des gaz

$$V_m = 24 L.mol^{-1}$$


$$M_{\rm H} = 1 \text{ g.mol}^{-1}$$
 , $M_{\rm N} = 14 \text{ g.mol}^{-1}$, $M_{\rm O} = 16 \text{ g.mol}^{-1}$

- 1) Calculer le volume occupé par **11,5** g de dioxyde d'azote (**NO**₂) gazeux.
- 2) On désire préparer 200 cm^3 d'une solution aqueuse d'ammoniac de concentration molaire $C = 0.8 \text{ mol.L}^{-1}$. Quelle masse d'ammoniac (NH_3) faut-il utiliser ?

EXERCICEIII: (3 points)

$$\rho_{\rm eau} = 1$$
 g.cm⁻³

On réalise les mesures suivantes :

- 1) Calculer la masse volumique du liquide.
- 2) Calculer la masse volumique du solide.
- 3) Quelle est la nature du solide (S)?

Métal	Fer	Cuivre	Plomb	Aluminium
Densité	7,8	8,9	11,3	2,7

EXERCICEIV: (3,5 points)

$$\rho_{\rm eau} = 1 \, \text{g.cm}^{-3}$$

Un cube d'arrête a = 2 cm pèse 60 g.

- 1) Calculer la densité de l'alliage constituant le cube.
- 2) Sachant que l'alliage est formé de cuivre et de zinc. Calculer la masse de cuivre et la masse de zinc dans le cube.

On donne :
$$\mathbf{d}_{\text{cuivre}} = 8.9$$
 $\mathbf{d}_{\text{zinc}} = 6.5.$

