EXERCICE N: 1 (3 points)

Pour chacune des questions suivantes, indiquer la seule réponse correcte.

1) Soit $f(x) = \sqrt{\frac{x}{x-2}}$ sachant que fest une bijection de] 2; +\infty [sur] 1; +\infty [alors :

a)
$$f^{-1}(x) = \frac{2x^2}{x^2-1}$$

b)
$$f^{-1}(x) = \frac{2x^2}{1-x^2}$$

c)
$$f^{-1}(x) = \frac{2x^2}{x^2 + 1}$$

2) Les racines quatrièmes de (16 i) sont :

a)
$$\begin{cases} Z_k = 2e^{i(-\frac{\pi}{8} + \frac{k\pi}{2})} \\ k \in \{1, 2, 3, 4\} \end{cases}$$

b)
$$\begin{cases} Z_k = 2e^{i(\frac{\pi}{8} + \frac{k\pi}{2})} \\ k \in \{1, 2, 3, 4\} \end{cases}$$
 c)
$$\begin{cases} Z_k = 2e^{i(\frac{\pi + k}{8})} \\ k \in \{1, 2, 3, 4\} \end{cases}$$

c)
$$\begin{cases} Z_k = 2e^{i(\frac{\pi + k}{8})} \\ k \in \{1, 2, 3, 4\} \end{cases}$$

3) Z_1 et Z_2 sont deux nombres complexes **inverses** vérifiant : $Z_1 + Z_2 = 1 + 2i$.

 Z_1 et Z_2 sont les solutions dans \square de l'équation :

a)
$$Z^2 - (1+2i)Z - 1 = 0$$

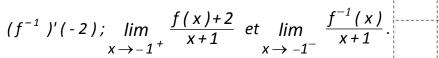
b)
$$Z^2 - (1 + 2i)Z + 1 = 0$$

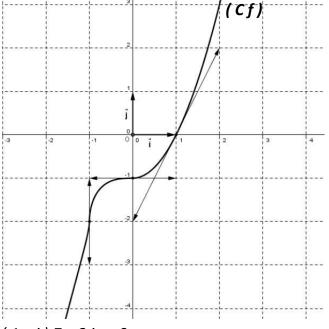
b)
$$Z^2 - (1+2i)Z + 1 = 0$$
 c) $Z^2 + (1+2i)Z + 1 = 0$

EXERCICE N: 2 (3.5 points)

1) Justifier que f est une bijection de IR sur un intervalle J que l'on précisera .

- **a**) Le domaine de dérivabilité de f^{-1} .
- **b)** Déterminer: f'(1); f''(0); $(f^{-1})'(0)$





EXERCICE N: 3 (6 points)

A) On considère dans \Box l'équation : **(E)** $2Z^2 - (\sqrt{3}+1)(1+i)Z + 2i = 0$.

- **1)** Vérifier que : $[(\sqrt{3}+1)(1+i)]^2 16i = [(\sqrt{3}-1)(1-i)]^2$.
- **2)** Résoudre dans \(\begin{aligned} \langle '\text{équation} \((E) \) \end{aligned} \.

B) Le plan complexe est rapporté à un repère orthonormé direct (O, \vec{u} , \vec{v}) On considère les points A et B d'affixes respectives : $\mathbf{a} = \frac{1}{2} + i \frac{\sqrt{3}}{2}$ et $\mathbf{b} = \frac{\sqrt{3}}{2} + \frac{1}{2}i$.

- **1)** a) Donner l'écriture exponentielle de chacun des nombres complexe a et b .
 - **b**) Vérifier que : $b^2 = a$.
 - c) Déduire les racines carrées du nombre complexes a.

- **2)** Soit C le point d'affixe c = a + b
 - a) Placer les points A, B et C
 - **b**) Vérifier que : $c = \frac{\sqrt{2} + \sqrt{6}}{2} e^{i\frac{\pi}{4}}$.
- **3)** On considère dans \Box l'équation : **(E')** $Z^2 + Z c = 0$.
 - a) Vérifier que b est une solution de (E').
 - **b**) On désigne par **d** l'autre solution de (**E'**). Prouver que : $\mathbf{d} = \frac{\sqrt{2} + \sqrt{6}}{2} e^{-i\frac{11\pi}{12}}$.
 - c) Placer le point D d'affixe d .

EXERCICE N: 4 (7.5 points)

A) Soit la fonction
$$f$$
 définie sur $[1; +\infty[par: f(x) = \frac{\sqrt{x^2-1}}{x} + 1]$.

On désigne par **(Cf)** sa courbe représentative dans le repère orthonormé $R(O,\vec{i},\vec{j})$.

- **1)** Prouver que $\lim_{x \to +\infty} f(x) = 2$ et interpréter graphiquement ce résultat.
- **2)** a) Etudier la dérivabilité de f à droite de 1. (Interpréter graphiquement le résultat obtenu).
 - **b**) Justifier que f est dérivable sur] 1; + ∞ [et que $f'(x) = \frac{1}{x^2 \sqrt{x^2 1}}$.
 - c) Dresser le tableau de variations de f .
- **3) a)** Montrer que f réalise une bijection de [1; + ∞ [sur [1; 2 [.
 - **b**) Justifier que f^{-1} est dérivable à droite de 1.
- **4)** Expliciter $f^{-1}(x)$ pour tout $x \in [1; 2[$.
- **B**) Soit la fonction g définie $sur[0, \frac{\pi}{2}]$ par : $g(\frac{\pi}{2}) = \frac{1}{2}$ et $g(x) = \frac{1}{f(\frac{1}{\cos x})}$ si $x \in [0, \frac{\pi}{2}[$.
 - **1)** Montrer que pour tout $x \in [0, \frac{\pi}{2}]$; $g(x) = \frac{1}{1 + \sin x}$
 - **2)** Justifier que g admet une réciproque g^{-1} définie sur $[\frac{1}{2}, 1]$.
 - **3)** Montrer que g^{-1} est dérivable sur $[\frac{1}{2}, 1]$ et que $(g^{-1})'(x) = -\frac{1}{x\sqrt{2x-1}}$.

