Lycée secondaire de bouhajla		Prof:F.Nízar	
Devoir de synthèse :1		Date:04/12/1013	
Année scolaire: Cli 2013/2014	asse: 4 ^{ème} Tech 4	Durée : 2h	Coeff:3

Exercice N°:1 (4 points)

Pour chaque que question : trois affirmations sont proposées ; une et une seule est exacte l'élève indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

- 1) La fonction $f: x \to \sqrt{\frac{x+1}{x}}$ est définie sur :
- a)] $-\infty$; 1[U]0;+ ∞ [

- b) $]-\infty;-1] \cup]0;+\infty[$
- $c)\mathbb{R}^*$
- 2) Si $\lim_{x\to +\infty} (f(x)+x)=1$ alors la droite Δ est une asymptote à C_f au voisinage de $(+\infty)$
- a) $\Delta : y = 1$

- b) $\Delta : y = x 1$
- c) $\Delta : y = -x + 1$
- 3) Les solutions dans l'ensemble $\mathbb C$ de l'équation : $z^2-i\sqrt{3}z+1=0$ sont :
- a) Opposées

- b) inverses
- c) ni opposées ni inverses
- 4) Si z est un nombre complexe non nul d'argument $\frac{\pi}{6}$ alors un argument de (iz) est :
- a) $\frac{\pi}{6}$

b) $-\frac{\pi}{6}$

c) $\frac{\pi}{3}$

Exercice N°; 2 (6 points)

- 1) Résoudre dans \mathbb{C} l'équation : $z^2 (1+i)z + i = 0$.
- 2) On considère dans l'ensemble C l'équation :

 (E_{θ}) : $z^2 - (1+i)e^{i\theta}z + ie^{2i\theta} = 0$ (ou θ est un réel).

- a) Vérifier que $z_1=e^{i\theta}$ est une solution de (E_{θ})
- b) En déduire l'autre solution z_2 de (E_θ)
- 3) Dans le plan complexe muni d'un repère orthonormé direct $(0, \vec{U}, \vec{V})$. On considère les points M et M' d'affixes respectives z_1 et z_2 .
 - a) Vérifier que $\frac{z_2}{z_1}$ est imaginaire pur.
 - b) Montrer que $\forall \theta \in \mathbb{R}$ le triangle OMM' est isocèle et rectangle en 0.

Soit f la fonction définie sur $\mathbb{R}\setminus\{1\}$ par $f(x)=\frac{\sqrt{x^2+3}-2}{x-1}$ et on désigne par (C_f) sa courbe représentative dans un repère (O,\vec{I},\vec{J}) du plan.

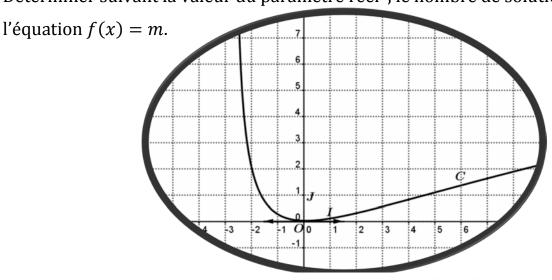
- 1) Montrer que : $\lim_{x\to -\infty} f(x) = -1$ et : $\lim_{x\to +\infty} f(x) = 1$; Interpréter graphiquement les résultats.
- 2) Montrer que fadmet une limite finie en 1 que l'on précisera.
- 3) Déterminer le prolongement par continuité g de f en 1.

Exercise $N^{\circ}: 4$ (5 points)

Le plan est rapportée à un repère orthonormé $(0, \vec{l}, \vec{J})$. La courbe (C) cí-dessous est celle d'une fonction f définie sur \mathbb{R} .

- ❖ (C) admet au $V(+\infty)$ une branche parabolique de direction $(0, \vec{l})$.
- **♦** (C) admet au $V(-\infty)$ une branche parabolique de direction $(0,\vec{J})$.
- ❖ (C) admet un minimum absolu au point d'abscisse 0 de valeur 0.
- (C) admet une tangente horizontale au point d'abscisse 0.

 <u>Utiliser le graphique pour répondre aux questions suivantes</u>:
 - 1) Déterminer (0).
 - 2) Déterminer $\lim_{x\to +\infty} f(x)$; $\lim_{x\to -\infty} f(x)$, $\lim_{x\to -\infty} \frac{f(x)}{x}$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$.
 - 3) Dresser le tableau de variation de .
 - 4) Résoudre f'(x) = 0 et $f'(x) \le 0$.
 - 5) Déterminer suivant la valeur du paramètre réel, le nombre de solution de



© 2014