P: Horri Nizar

de mathématiques : Durée 2 h

classe: 4sc. tech 2

Exercice n°1 (4 pts)

Pour chaque question ; trois affirmations sont proposées ; une et une seule est exacte l'élève indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse choisie . Aucune justification n'est demandée.

1) La fonction $f: x \to \sqrt{\frac{x+1}{x}}$ est définie sur

- a) $]-\infty$, $-1[\cup]0$, $+\infty[$
- b) $]-\infty,-1$ $] \cup]0,+\infty[$
- c) IR^*

2) Si $\lim_{x\to +\infty}$ (f(x)+x)=1 alors la droite Δ est une asymptote à C_f au voisinage de $(+\infty)$

a) $\Delta : y = 1$

b) $\Delta : y = x - 1$

c) Δ : y = -x + 1

1) Les solutions dans l'ensemble $\mathbb C$ de l'équation : $z^2 - i \sqrt{3} z + 1 = 0$ sont :

a) Opposées

b) inverses

c) ni opposées ni inverses

2) Si z est un nombre complexe non nul d'argument $\frac{\pi}{6}$ alors un argument de ($i \bar{z}$) est :

a) $\frac{\pi}{6}$

 $(b)-\frac{\pi}{6}$

c) $\frac{\pi}{3}$

Exercice n°2 (6 pts)

1) Résoudre dans \mathbb{C} l'équation : $z^2 - (1+i)z + i = 0$.

2) On considère dans l'ensemble $\mathbb C$ des nombres complexes l'équation :

 $(E_{\theta}): z^2 - (1+i) e^{i\theta} z + i e^{2i\theta} = 0$. $(où \theta est un réel)$.

- a) Vérifier que $z_1 = e^{i\theta}$ est une solution de (E_{θ}) .
- b) En déduire l'autre solution z $_2$ de (E $_\theta$) .

3) Dans le plan complexe muni d'un repère orthonormé direct (O, \overrightarrow{u} , \overrightarrow{v}). On considère les points M et M' d'affixes respectives z_1 et z_2 .

a) Vérifier que $\frac{z_2}{z_1}$ est un imaginaire pur .

b) Montrer que pour tout réel θ le triangle OMM' est isocèle et rectangle en O.

...voir suite au verso

Soit f la fonction définie sur $IR \setminus \{1\}$ par $f(x) = \frac{\sqrt{x^2 + 3} - 2}{x - 1}$ et on désigne par (C_f) sa courbe représentative dans un repère (O_f, \vec{l}, \vec{j}) du plan.

- 1) Montrer que : $\lim_{x \to -\infty} f(x) = -1$ et $\lim_{x \to +\infty} f(x) = 1$; Interpréter graphiquement les résultats .
- 2) Montrer que f admet une limite finie en 1 que l'on précisera.
- 3) Déterminer le prolongement par continuité g de f en 1.

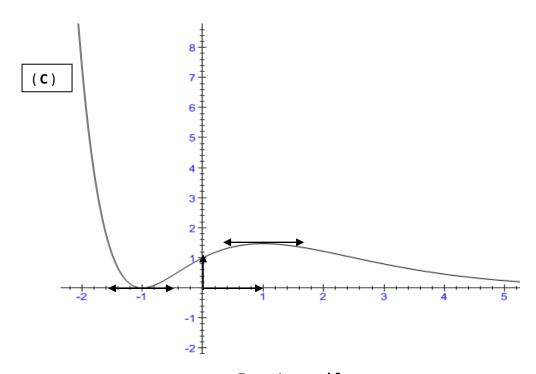
Exercice n°4 (6 pts)

Le plan est rapporté à un repère orthogonal (O, \vec{t}, \vec{j}) . La courbe (C) ci-dessous est celle d'une fonction f définie sur IR.

- La droite d'équation y = 0 est une asymptote à (C) au $v (+\infty)$.
- \blacktriangleright (C) admet au voisinage de $-\infty$ une branche parabolique de direction (O, \vec{j}).
- \triangleright (C) admet un maximum relatif au point d'abscisse 1 de valeur $\sqrt{2}$.
- \triangleright (C) admet deux tangentes horizontales aux points d'abscisses respectifs (-1) et 1.

Utiliser le graphique pour répondre aux questions suivantes :

- 1) Déterminer f(0).
- 2) Déterminer $\lim_{x \to +\infty} f(x)$; $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$.
- *3) Dresser le tableau de variation de la fonction f* .
- 4) Résoudre: f'(x) = 0 et $f'(x) \le 0$
- 5) Déterminer suivant la valeur du paramètre réel m, le nombre de solutions de l'équation f(x) = m.



Bon travail