L-S-Ibn khaldoun ousseltia	Devoir de synthése N°1	Classe: 4°tech
Prof : A – Khaled	Mathématiques	Durée : 2h

Exercice N°1 (4points)

Pour chaque question, trois réponses sont proposées dont une et une seulement est exacte. Indiquez sur vôtre copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée

1/ Dans le plan complexe muni d'un repère orthonormé ((O , \vec{i} , \vec{j}) , si A, B et C d'affixes respectives z_A , z_B et z_C tels que z_B - z_A = - $\sqrt{2}$ i (z_C - z_A) alors :

a/ A, B et C sont alignés b/ ABC est rectangle en A c/ ABC est isocele en A

2/ le nombre complexe $\sqrt{3}$ - i est une racine carrée de :

- a) $2+2i\sqrt{3}$ b) $2-2i\sqrt{3}$ c) $1-2i\sqrt{3}$
- 3/ Soient les points A , B et C d'affixes respectives i et -1 –i , l'ensemble des points M d'affixe z tel que |z-i|=|z+1+i| est :
 - a) le cercle de diamétre [AB] b) la médiatrice du segment [AB] c) la droite (AB)
- 4/ Si f est une fonction dérivable sur un intervalle I, g est dérivable sur un intervalle J, telle que pour tout x de J, $g(x) \in J$ alors la fonction fog est dérivable sur J et pour tout x de J On a
- a) (fog) ' (x) = f '(g(x)) b) (fog)'(x) = f '[g(x)].g(x) c) (fog)'(x) = f'(x) . g'(x)

Exercice N°2 (6pts)

- 1/ Résoudre dans \Box l'équation : z2 +(1- i)z -2(1 + i) =0
- 2/ On considére l'équation (E): $z^3 + z^2 (1+i)z + 2(1+i) = 0$
 - a-- Vérifier que $z_0^{}=$ -i est une solution de (E)
 - b-- Résoudre l'équation (E)
- 3/ Le plan est rapporté à un repère orthonormé (O, \vec{i} , \vec{j})
 - a-- Placer les points A, B et C d'affixes respectives -i, -2 et 1+i
 - b-- Determiner l'affixe du point D tel que ABCD soit un paraléllogramme
 - 4/ Déterminer et construire l'ensemble des points M d'affixe z tels que

$$\begin{cases} |z+2| = |z-1-i| \\ |z+i| = 2 \end{cases}$$

Exercice N°3 (6pts)

Soit f la fonction définie sur IR \{1\} par : f(x) = $\frac{2x^3 + 2x^2 - 10x + 11}{2(x-1)^2}$ et © sa courbe

représentative dans un repère orthonormé (O, \vec{i}, \vec{j})

- 1/ Montrer que f(x) = x +3 + $\frac{5}{2(x-1)^2}$ puis calculer f'(x)
- 2/ a-- Dresser le tableau de variation de f
 - b—Déterminer les asymptotes de la courbe (C) de f
 - c—Montrer que l'équation f(x) = 0 admet une unique solution α dans l'intervalle]-4,-1[
 - d—Tracer (C)
- 3/ a—Soit g la restriction de f sur l'intervalle]- ∞ ,1[, Montrer g réalise une bijection de]- ∞ ,1[sur un intervalle J que l'on déterminera
 - b—Calculer (g⁻¹)'(0) en fonction de α
 - c—Tracer dans le meme repère la courbe (C^{\prime}) de $\,g^{\mbox{\tiny -1}}$

Exercice N°4 (4pts)

Sur la figure ci-contre est la tracée la courbe reprèsentative d'une fonction dérivable sur IR

- la droite D est la tangente à (C) au point A(-2,1)
- la courbe (C) admet deux tangentes paralléles à l'axe des abscisses aux points d'abscisses respectives -1 et 3
 - A) Répondre par vrai ou faux
 - 1/ L'équation f(x) = 0 admet dans IR :
- a) exactement trois solutions
- b) au moins trois solutions
- 2/ On désigne par f ' la fonction dérivée de f alors : a) f ' (-2) =-3

b) f '
$$(-2) = 3$$

- 3/ a/ $\underset{x}{\underline{\text{Lim}}}_{+\infty}$ f(x) = +\infty ; b/ $\underset{x}{\underline{\text{Lim}}}_{-\infty}$ f(x) = +\infty
- B) 1/ Dresser le tableau de variation f
 - 2/ Déterminer, en justifiant, les extrémas de f et préciser leurs natures

