Lycee .s .Iben Charaff Nadhour DEVOIR DE CONTROLE N1

classe: 4 tech 1

Prof: Elbekri..R

mathématiques

octobre 2017

<u>Exercíce nº1 (4pts)</u>

On donne le nombre complexe $Z = \sqrt{2 + \sqrt{2}} + i\sqrt{2 - \sqrt{2}}$

1)a)donner la forme algébrique de Z²

b)déduire la forme exponentielle de Z²

2)déduire la forme exponentielle de Z

3) donner les valeurs exactes de $\cos(\frac{\pi}{8})$ et $\sin(\frac{\pi}{8})$

<u>Exercíce nº2 (6pts)</u>

le plan est muní du repère orthonormé (o ,ū; v) on consídère les points A et B daffixes respectives $z_A = 1$ et $z_B = -i$ $\mathcal{M}(z \neq -i)$ on associe le point $\mathcal{M}'(z')$; $z' = \frac{1-z}{1-iz}$

1) prouver que $|z'| = \frac{AM}{RM}$

2) déduire l'ensemble des points M(z) tel que |z'| = 1

3) déterminer l'ensemble des points M(z) tel que z'est réel

4)a)vérifier que (z'+i)(z+i)=-1+i puis déduire $\mathcal{BM}.\mathcal{BM}'=\sqrt{2}$ et $(u;\overrightarrow{BM}) + (u;\overrightarrow{BM}') \equiv \frac{3\pi}{4}[2\pi]$

b) déterminer l'ensemble des points $\mathcal{M}'(z')$ lorsque le point \mathcal{M} décrit le cercle $\zeta_{(B:1)}$

c) déterminer l'ensemble des points $\mathcal{M}'(z')$ lorsque le point \mathcal{M} décrit la demi-droite $[0;\vec{u}]$

<u>Exercíce n°3(6,5pts)</u>

Soit la fonction f sur \mathbb{R} par $f(x) = \begin{cases} \sqrt{x^2 + 3} - 3 \sin x < 1 \\ 2x - 3 + \frac{2}{x} \cos\left(\frac{\pi x}{2}\right) \sin x \ge 1 \end{cases}$ on désigne par (Cf) sa représentation graphique dans un repère orthonormé (o ;; j)

1)a)calculer $\lim_{x\to-\infty} f(x)$ et $\lim_{x\to-\infty} \frac{f(x)}{x}$

b)Montrer que $\lim_{x\to-\infty} [f(x)+x] = -3$ puis interpréter le résultat géométriquement

2)a)montrer que pour tout $x \in [1; +\infty[$ on $\dot{a}: 2x-4 \le f(x) \le 2x-2$

b)en déduire $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$

3)a)montrer que f est contínue en 1

b)prouver que f est continue sur R

4) a)montrer que l'équation f(x) = 0 admet une solution $x \in]1;2[$

b) vérifier que $\cos\left(\frac{\pi \alpha}{2}\right) = \frac{3}{2} \propto -\alpha^2$

Exercíce n°4(3,5pts)

la figure suivante est la représentation graphique dans un repère orthonormé (o \vec{s} ; \vec{j}) d'une fonction f définie sur \mathbb{R}

- (cf) admet une tangente horizontale au point A(-1;2,7)
- La tangente à (cf) au point B(o ;2) passe par le point D (2 ;0)
- l'axe des abscisses est une asymptote horizontale à (cf) au voisinage de (+∞)
- (cf)admet une branche parabolique de direction (o ;
) au voisinage de (-∞)

par	lecture	graphú	que	
,			L	

C'.	,
aeterr	míner:

1)a) $\lim_{x\to+\infty} f(x) = \dots$

 $\lim_{x\to-\infty}f(x)=\ldots$

 $\lim_{x\to-\infty}\frac{f(x)}{x}=\dots$

 $\mathcal{B}/f(-2) = \dots$

 $f'(-1) = \dots$

 $f'(0) = \dots$

2)dresser le tableau de variation de f

3)la fonction h est restriction de f sur $[-1;+\infty[$

 $montrer\ que\ l'équation\ h(x)=1\ admet\ une\ unique\ solution\ \propto$

.....

4)soit la fonction g définie par $g(x) = \frac{1}{f(x)}$

a) déterminer le domaine de définition de g : Dg=.....

b) déterminer $\lim_{x\to +\infty} g(x) = \dots$

 $\lim_{x\to-\infty}g(x)=\ldots$

