EXERCICE N°1 08 pts

Soit f la fonction définie par $f(x) = 1 - \cos 2x + 2\cos x$ et ζ_f sa courbe représentative dans un repère orthogonal (O, \vec{i}, \vec{j})

- **1°)** <u>a</u>. Montrer que f est paire et périodique de période 2π
 - **b.** Déduire qu'on peut étudier $f sur [0,\pi]$
 - **c.** Montrer que pour tout $x \in [0,\pi]$ on $a: f'(x) = 2 \sin x . (2 \cos x 1)$
 - **<u>d</u>**. Dresser le tableau de variation de f sur $[0,\pi]$
- **2°)** Tracer la courbe de la restriction de f à l'intervalle $[0,\pi]$ puis à $[-2\pi,3\pi]$
- **3°)** soit g la fonction définie sur $]-\pi;\pi[par:g(x)=\frac{f(x)-2}{\sin x}$ si $x \neq 0$ et g(0)=0

Etudier la continuité puis la dérivabilité de g en 0

EXERCICE N°2 03 pts

Soit (U_n) la suite définie sur IN par : $U_0 = \frac{1}{2}$ et $U_{n+1} = \frac{U_n}{2-U}$

- **1°)** <u>a</u>. Montrer que pour tout $n \in IN$ on $a : 0 < U_n \le \frac{1}{2}$
 - **<u>b</u>** Etudier la monotonie de (U_n)
- **2°)** Soit (V_n) la suite définie sur IN par : $V_n = \frac{1}{U} 1$
 - **<u>a</u>.** Montrer que (V_n) est une suite géométrique de raison 2.
 - $\underline{\boldsymbol{b}}$. Exprimer V_n puis U_n en fonction de n

EXERCICE N°3 09 pts

I°) Pour tout entier naturel n, on considère les nombres :

$$a_n = 11 \times 13^n + 2 \qquad et$$

$$b_n = 7 \times 13^n + 1$$

- **1°)** \underline{a} Montrer que le nombre a_9 est premier.
 - **<u>b</u>** Déduire que le nombre : $2018^{1860} 1$ est divisible par a_9
- **2°)** $\underline{\boldsymbol{a}}$ Montrer par récurrence, que pour tout entier naturel n: b_n+1 est divisible par 3
 - $\underline{\textbf{\textit{b}}}\text{-}$ En déduire le reste de la division euclidienne de : $7 \times 13^{2018} + 10~$ par 3.
- **3**°) Soit d un diviseur commun de a_n et b_n
 - **a** Montrer que d est un diviseur de 3.
 - **<u>b</u>** En déduire que a_n et b_n sont premiers entre eux.
- **II**°) <u>a</u>- Vérifier que couple (2, 1) est une solution de l'équation (E) : 7x 11y = 3
 - **<u>b</u>**-Vérifier que l'équation (E) est équivalente à : 7(x-2) = 11(y-1)
 - **<u>c</u>**. Déterminer tous les couples (x,y) d'entiers naturels tels que : 7(x-2) = 11(y-1)
 - $\underline{\mathbf{d}}$ Déterminer les coordonnées entières des points de la droite D:7x-11y-3=0 comprises entre 0 et 1

III°) Résoudre dans
$$\mathbb{N} \times \mathbb{N}$$
 le système : $S: \begin{cases} a \wedge b = 11 \\ a \vee b = 770 \\ a \geq b \end{cases}$

On désigne par (C) sa courbe représentative dans un repère orthonormé $\left(\mathbf{0},\vec{\mathbf{i}},\vec{\mathbf{j}}\right)$.

- 1) Montrer que f est périodique de période π et étudier la parité de f
- 2) Montrer que $f'(x) = \sin 2x$, puis dresser le tableau de variation de $f \sup \left[0, \frac{\pi}{2}\right]$.
- 3) Construire la restriction de la courbe de f à l'intervalle $\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$.
- 4) soit g la fonction définie par : $g(x) = \frac{x(1-\cos 2x)}{\sin^2 x}$ si $x \neq 0$ et g(0) = 0

Etudier la continuité et la dérivabilité de g en 0