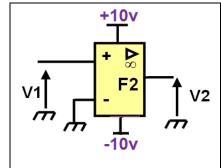

المادّة: الهندسة الكهربائية **القسم :** باكالوريا علوم تقنية

Page 1 / 1

Exercice n°1:

Soit un moteur à courant continu. On étudie le fonctionnement de ce moteur à intensité d'inducteur constante et lorsque pour la charge nominale on a U = 220v, I = 12.5A et $R = 2\Omega$. On donne Les courbes ci-dessous qui représentent les caractéristiques E' = f(n) et Tém = f(l).

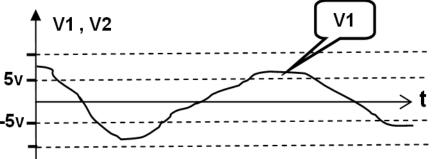


1-	1- Exprimer la f.c.é.m (E') de ce moteur en fonction de vitesse de rotation n (tr/min) :						
2-	Calculer la f.c.é.m (E') en fonctionnement nominal :						
3-	Déduire la vitesse de rotation nominale (n) :						
4-	Exprimer le couple électro-mécanique (Tém) de ce moteur en fonction de courant induit (I) :						
5-	Calculer le couple électro-mécanique (Tém) en fonctionnement nominal :						
6-	Calculer la puissance électro-mécanique (Pém) en fonctionnement nominal : Méthode 1 : Méthode 2 :						

الاستاذ: عبدالله الروافي

24v 140°C θ 20°C R 2R 777
↑ ↑ V ₁
M

B. L'ALI possède une polarisation symétrique comme l'indique la figure ci-dessous



1- Compléter :

Si
$$V_1 > 0$$
 $V_2 =$

Si
$$V_1 < 0$$
 $V_2 =$

3- Quel est régime de fonctionnement ?

4- Quel est le nom de ce bloc?

.....

Exercice n°3: (Extrait BAC 2011)

Lecture de la plaque signalétique d'un moteur asynchrone triphasé.

En se référant aux indications portées par la plaque signalétique ci-contre;

-	
Repère	Signification
	Courant en ligne pour un couplage étoile
	Vitesse de rotation nominale
	Facteur de puissance
5	Puissance utile

5	SOMER FRANCE MOTEUR ASYNCHRONE - NFC 51-111 NOV 79	$\frac{4}{3}$
6	Type LS 90 Lz 595257/3 kW (1,5 cosφ 0,78 ΔV 230 A 6,65 cdlo 76 λV 400 A 3.84	
	tr/min 1440 isol'classe ambce°C 40 Hz 50 ph 3 S. v° S1 Proulements Made in Autres Pièces Made in FRANCE	1

Repère	Signification
	Tension du réseau pour un couplage triangle
	Nombre de phases
	Courant en ligne pour un couplage triangle
	Tension du réseau pour un couplage étoile

2-	Calculer	la	puissance	absorbée	Pa	1
----	----------	----	-----------	----------	----	---

☑ Couplage étoile : Pa=....

3- Déduire le vitesse de synchronisme :

4- Calculer le glissement et le rendement pour dans ce régime nominal :

g =