المادّة: الهندسة الكهربائية القسم: بآكالوريا علوم تقنية

Exercice n°1: « QCM »

En mettant une croix devant la ou les réponse(s) correcte(s);

1- Le complément à 1 de (10100110)2 est :

10101010 01011001 10100110

2- Le complément à 2 de (10111010)2 est:

ſ	01000101	10001010	01000110	

3- Pour un compteur asynchrone modulo 5, l'équation de RAZ est :

Q0.Q1	Q0.Q2	Q1.Q2	
٠,٠,٠,٠	~0.~-	~~=	

4- Pour un compteur **binaire** synchrone **modulo 12**, il faut utiliser :

1 circuit intégré	2 circuits intégrés	3 circuits intégrés	
. on continueg. c	- 0 0 a 0 100 g. 00	o on conto intograc	

5- Pour un compteur BCD synchrone modulo 12, il faut utiliser :

1 circuit intégré	2 circuits intégrés	3 circuits intégrés	

6- Un A.L.I supposé idéal donc:

i = 0 et i ≠ 0	i ≠ 0 et i = 0	$i^{-} = 0$ et $i^{+} = 0$	

7- L'amplificateur fonctionne en **mode linéaire** si :

La sortie en boucle	La sortie revienne	La sortie revienne à	
ouvert	à la borne (-)	la borne (+)	

8- L'amplificateur fonctionne en mode saturé (non linéaire) si :

La sortie en boucle	La sortie revienne	La sortie revienne à	
ouvert	à la borne (-)	la borne (+)	

9- Pour un moteur à courant continue à aimant permanant on ne trouve pas les :

Pertes joules	Pertes joules	Pertes	
rotorique	statorique	constantes	

10- Pour un moteur à courant continue à électro-aimant la puissance absorbée est égale :

Pa = Pa _s	Pa = Pa _R	$Pa = Pa_s + Pa_R$	

11- Pour une f.c.é.m E'=200v d'un moteur à courant continu à une vitesse de rotation n=1400tr/min: lorsque la vitesse à vide n₀=1645tr/min alors la f.c.é.m E'₀ est égale :

11 11004,11111111111111111	 	 ######################################	
225v	235v	245v	

12- Les **pertes constantes** d'un moteur à courant continu sont déterminées :

Au démarrage	Par l'essai à vide	Par l'essai en charge	

13- Le **hacheur** est un convertisseur de tensions :

Alternative - Continue	Continue - Alternative	Continue - Continue	
7 II COMMINICATION CONTINUES	7		

14- Dans un système asservi, **la sortie ε** dans ce cas est égale:

Page 1 / 1

الاستاذ: عبدالله الروافي

15- Dans un système asservi, la transmittance T de deux blocs en série est :

	A - B	
igchapsize A $igchapsize$ B $igchapsize$	A + B	
	A * B	

16- La tension simple d'un réseau triphasé (230v) est entre :

Neutre - Neutre	Neutre - Phase	Phase - Phase	
reduc reduc	Neutro Triasc	i nasc i nasc	

17- La tension composée d'un réseau triphasé (400v) est entre :

18- La puissance active P pour un récepteur triphasé est :

$\sqrt{3}.U.I.$ sin φ	√3.U.I. cosφ	√3. <i>U.I</i>	

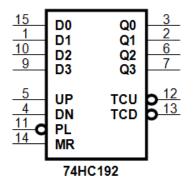
19- La puissance réactive Q pour un récepteur triphasé est :

-			
$\sqrt{3}.U.I.\sin\varphi$	√3.U.I.cosφ	$\sqrt{3}.U.I$	

20- La puissance apparente S pour un récepteur triphasé est :

√3. <i>U</i>	.I. sinφ	√3.U.I. cosφ	$\sqrt{3}.U.I$	

21- La méthode d'un seul wattmètre pour un récepteur triphasé équilibré donne :


Parameter Control of the Control of			
$P = P_1$	$P = 2.P_1$	$P = 3.P_1$	

22- La méthode de deux wattmètres pour un récepteur triphasé déséguilibré donne :

D _ D . D	P = P ₁ *	D	$P = P_1 - P_2$	
$P = P_1 + P_2$	P = P ₁ , ,	Γ2	$\Gamma = \Gamma_1 - \Gamma_2$	

Exercice n°2 : « Compteur / Décompteur à base des circuits intégrés »

74 HC192: Compteur / décompteur BCD synchrone.

Etat des entrées			Données parallèles			Sorties			Cascade				
MR	UP	DN	PL	D0	D1	D2	D3	Q0	Q1	Q2	Q3	TCU	TCD
1	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	1	1
0	Х	Х	1	Х	Х	Х	Х	D0	D1	D2	D3	1	1
0	FM	1	0	Х	Х	Х	Х	Comptage		Χ	X		
0	1	FM	0	X	X	X	X	Décomptage			X	X	

- FM: front montant du signal d'horloge.

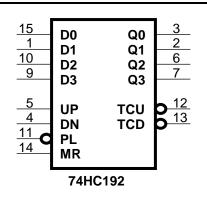
- X : état indifférent (0 ou 1).

Travail demandé :

1. Déduire le modulo maximal de ce circuit :

2. Donner le rôle de l'entrée MR :

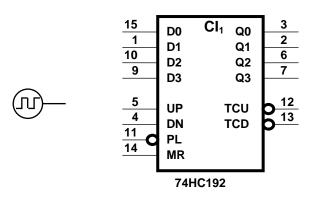
3. Donner le rôle de l'entrée PL :

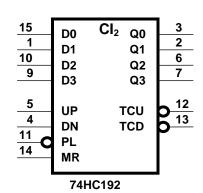

4. Donner le rôle des sorties TCU et TCD :

5. Pour un compteur modulo 42, justifier le nombre de circuit intégré à utiliser :

.....

6. Compléter le schéma de câblage suivant à fin de réaliser un <u>compteur modulo 6</u> en utilisant l'entrée **MR** puis l'entrée **PL** pour la remise à 0.


Equation de remise à zéro : RAZ =



15 1 10 9	D0 D1 D2 D3	Q0 Q1 Q2 Q3	3 2 6 7				
5 4 11 14	UP DN PL MR	TCU TCD	9 12 13				
74HC192							

7. Compléter le schéma de câblage suivant à fin de réaliser un <u>compteur modulo 28</u> en utilisant l'entrée **MR** pour la remise à 0.

Equation de remise à zéro : RAZ =

Exercice n°3 : « Etude d'un moteur à courant continu »

Un moteur (Mt) à courant continu et à excitation indépendante porte sur sa plaque signalétique les indications nominales suivantes :

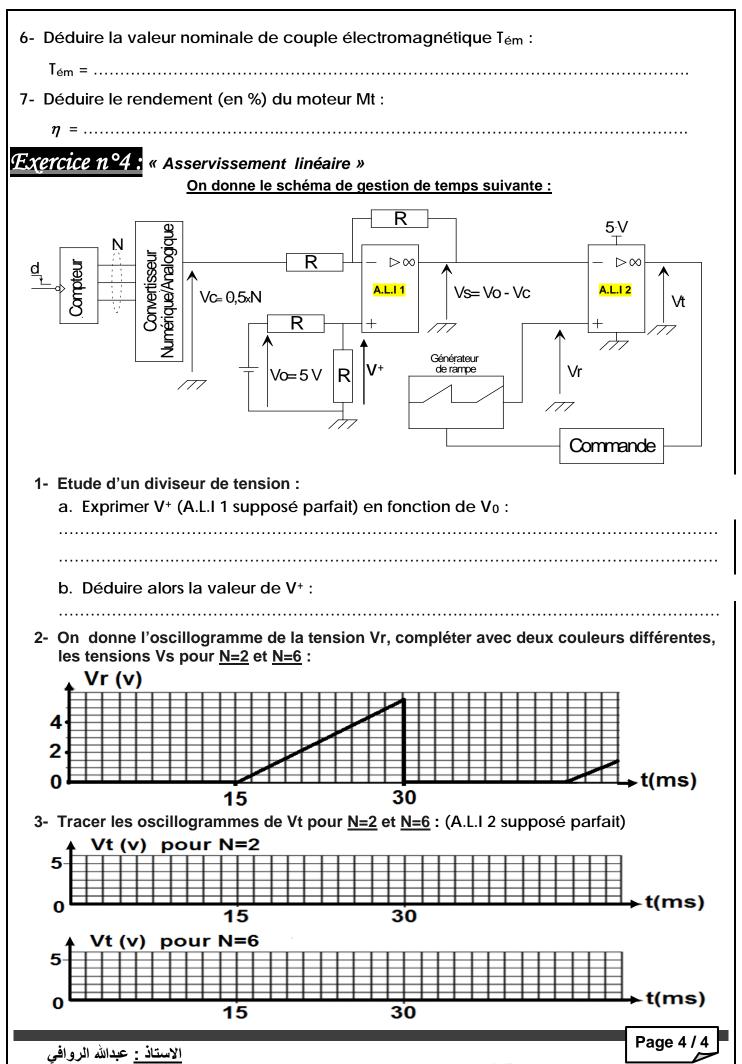
- **Inducteur**: u=250v et i=2A.
- \blacksquare Induit: U=250v, I=10A, R=4 Ω , n=1200 tr/min et Pu=2 Kw.
- 1- Calculer pour le fonctionnement nominal la f.c.é.m E' :

E' =

2- Calculer la puissance absorbée Pa et la puissance électromécanique Pém:

Pa =

Pém =


3- Déduire la valeur de pertes constantes $p_{\text{\scriptsize C}}$:

p_C =

4- Montrer que $E' = K_1.n$ et calculer cette constante K_1 en (V/tr/s):

5- Montrer que $T_{\acute{e}m}$ = K_2 .I et calculer cette constante K_2 :

.....

