Classe: 4^{ème} Math A.S.: 2016/2017

Lycée de Cebbala –Sidi Bouzid Prof : Barhoumi Ezzedine

Les oscillations électriques libres amorties et non amorties

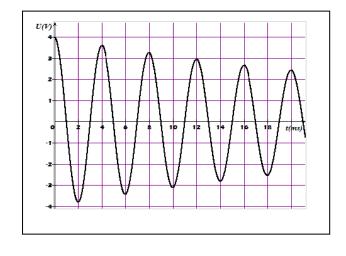
Exercice n°1:

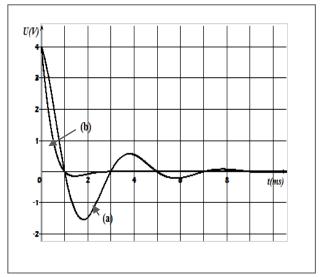
On réalise un circuit RLC-série, comprenant un condensateur de capacité C initialement chargé, une bobine d'inductance L=0,2H et de résistance négligeable et un résistor de résistance R variable.

La tension $u_C(t)$ aux bornes du condensateur est visualisée à l'aide d'un capteur voltmètre relié à un ordinateur.

- 1) Pour $R=R_1=10\Omega$, on obtient la courbe ci-contre.
- a- Déterminer la pseudopériode des oscillations.
- b— Calculer la valeur de la capacité C en admettant que la pseudopériode est égale à la période propre T_0 du cicuit
- 2) a– Etablir l'équation différentielle qui régit l'évolution de la tension $u_C(t)$.
- b- Montrer que l'énergie totale de l'oscillateur n'est pas conservée.
- 3) On demande de déterminer la valeur de:
- a– l'énergie totale E_0 à l'instant t_0 =0ms.
- b–l'énergie totale E_1 à l'instant t_1 =12ms.
- c-l'énergie W transformée en chaleur dans le circuit entre les instants t_0 et t_1 .
- 4) Pour deux valeurs différentes R_2 et R_3 de R, telle que $R_2 > R_3$, on obtient les courbes (a) et (b).

Attribuer à chaque courbe à la résistance correspondante et nommer le régime des oscillations dans chaque cas.





Exercice n°2

Le circuit électrique schématisé sur la figure 1, comporte deux interrupteurs K_1 et K_2 , un générateur idéal de tension continue de fem E, un condensateur de capacité C et d'armatures A et B, une bobine d'inductance L et de résistance négligeable.

1/L'interrupteur K_2 étant ouvert, on ferme K_1 . Après une brève durée, l'armature A porte une charge maximale Q_0 et le condensateur emmagasine une énergie électrostatique W0.

- a- Exprimer Q_0 en fonction de E et C.
- b- Exprimer W_0 en fonction de Q_0 et C.
- 2/ Le condensateur étant chargé; à l'instant t=0 on ouvre K_1 et on ferme K_2 . A un instant t quelconque, l'armature A du condensateur porte une charge électrique q.
- a- Exprimer l'énergie électromagnétique W en fonction de L, C, q et l'intensité du courant i.
- b- Montrer, sans faire aucun calcul que cette énergie se conserve et qu'elle est égale à W₀.
- c-Déduire l'équation différentielle des oscillations électriques de la charge q.
- d- Déterminer l'expression de la période propre T₀ en fonction de L et C.
- e- Déterminer la valeur de ϕ_q , sachant que l'expression de la charge s'écrit : $q(t) = Q_0 \sin(\frac{2\pi}{T_0}t + \phi_q)$.
- 3/ Montrer que l'expression de l'énergie magnétique de la bobine W_L en fonction du temps s'écrit : $W_L = \frac{W_0}{2} \left[1 + \cos(\frac{4\pi}{T_0}t + \pi)\right]$.

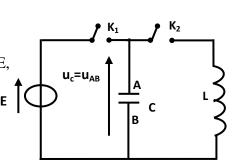
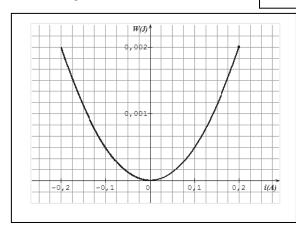


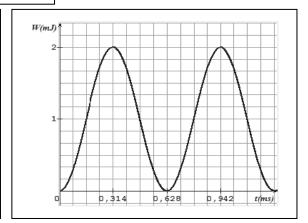
Figure-1

4/ Une étude expérimentale a permis de tracer sur la figure 2 les courbes, traduisant les variations de l'énergie magnétique W_L en fonction de i et en fonction du temps.

Déterminer, en exploitant ces courbes :

- a- les valeurs de L et deW₀.
- b- La valeur de T₀.
- 5/ Déterminer alors C, Q₀ et E.





Exercice n°3:

On réalise le montage de la figure 3 qui comporte :

- · un générateur idéal de tension continue E=5V,
- · un condensateur de capacité C,
- · un résistor de résistance $R=250\Omega$,
- · une bobine d'inductance L et de résistance nulle,
- · un commutateur K.

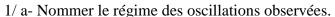
I/ À un instant pris comme origine du temps (t=0), on ferme le commutateur K à la position 1 et on enregistre, sur la voie Y_A d'un oscilloscope à mémoire, l'évolution de la tension aux bornes du résistor u_R en fonction du temps, on obtient la courbe de la figure 4.

 $1/\ a.$ Etablir l'équation différentielle vérifiée par la tension u_R et la mettre sous la forme :

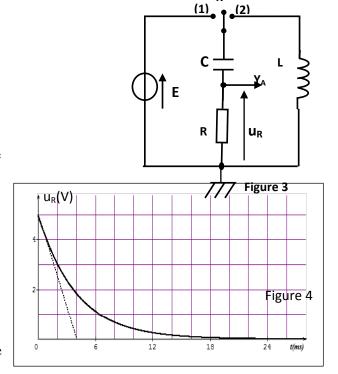
$$\frac{du_R}{dt} + \frac{1}{\tau}u_R = 0 \quad avec \ \tau = RC.$$

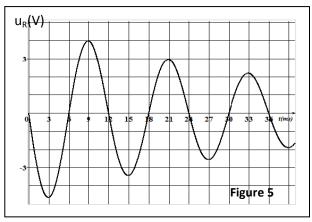
- b. Vérifier que $u_R(t)=Ee^{-t/\tau}$ est une solution de l'équation différentielle.
- 2/ Déterminer la valeur de τ et vérifier que C=16 μ F.

II/ Le condensateur étant complètement chargé, on bascule le commutateur K à la position 2 et on enregistre l'évolution de la tension aux bornes du résistor u_R en fonction du temps, on obtient la courbe de la figure 5. L'instant de basculement du commutateur est pris comme origine des dates (t=0).



- b- Déterminer la valeur de période T des oscillations.
- c- En déduire la valeur de l'inductance L en admettant que T est égale à la période propre T₀.





- 2/ a. Calculer la valeur de l'énergie électrique initiale emmagasinée dans le condensateur Ee_0 et en déduire la valeur de l'énergie totale E_0 à t=0.
- b. Déterminer la valeur de l'énergie totale E₁ à l'instant t=3ms.
- c. Calculer la variation de l'énergie total de E entre les instants t=0 et t=3 ms et préciser la cause de cette variation.

Exercice n°5:

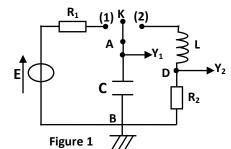
On réalise le montage de la figure 1 qui comporte :

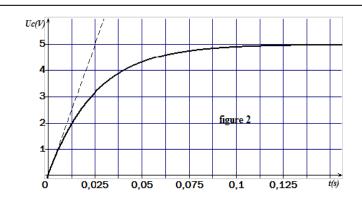
- · un générateur idéal de tension continu E=5V,
- · un condensateur initialement déchargé de capacité C,
- deux résistors de résistances $R_1=50K\Omega$ et $R_2=100\Omega$,
- · une bobine d'inductance L et de résistance nulle,
- · un commutateur K.
- I- A un instant pris comme origine du temps, on bascule le commutateur K à la position 1 et on suit l'évolution au cours du temps de la tension $u_C = u_{AB}$.
- 1- a- Préciser le phénomène qui se produit au niveau du condensateur.
- b- Etablir l'équation différentielle qui régit l'évolution de la tension u_C au cours du temps.
- c- Vérifier que $u_C(t)=E(1-e^{-t}/R_1C)$ est une solution de l'équation différentielle précédente.
- solution de l'équation différentielle précédente.

 4- Le graphe de la figure 2 est obtenu sur la voie Y₁ de l'oscilloscope.
- a- Déterminer la constante de temps τ du dipôle R_1C et en déduire la valeur de C.
- b- Calculer la valeur de u_C à t_1 =50ms. Préciser si le condensateur est complètement chargé à l'instant t_1 .
- II- Le condensateur étant complètement chargé, on bascule le commutateur K à la position 2. Les oscillogrammes de la figure 3 représentent les oscillogrammes visualisés simultanément sur les deux voies Y_1 et Y_2 de l'oscilloscope.



- 1- Identifier, en justifiant, les courbes (1) et (2).
- 2- a- Montrer que le circuit R_2LC est le siège d'oscillations libres amorties de pseudopériode T que l'on déterminera.
- b- Déterminer la valeur de l'inductance L de la bobine sachant que la pseudopériode T est pratiquement égale à la période propre T_0 du circuit R_2LC et que la capacité C vaut $0.5\mu F$. On prendra pour ce calcul : $\pi^2 = 10$.





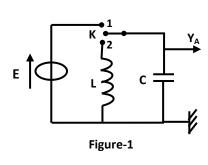
- 3- a- Calculer la valeur de l'énergie totale du circuit R_2LC aux instant t_0 =0, t_1 =3ms et t_2 =7ms.
- b- En déduire si le circuit R₂LC est conservatif ou bien non conservatif.
- c-Calculer l'énergie dissipée par effet joule dans le circuit R_2LC pendant la durée Δt = t_2 t_1 .

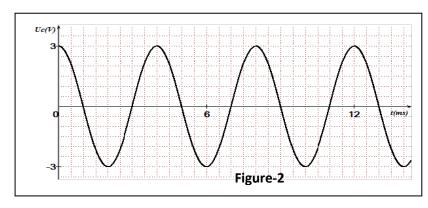
Exercice n°6:

Le circuit de la figure -1 comporte un générateur de tension constante E=3V, un condensateur de capacité C=4.10⁻⁶F, une bobine d'inductance L et de résistance interne négligeable et un commutateur K.

D'abord, on place le commutateur K à la position 1 quelques instants et lorsque le condensateur est complètement chargé, on bascule le commutateur K à la position 2.

A l'aide d'un oscilloscope à mémoire (sur la voie Y_A), on enregistre la courbe donnant l'évolution de la tension u_c aux bornes du condensateur en fonction du temps, on obtient la courbe de la figure 2.





1/ a- En justifiant, choisir la qualification qui convient aux oscillations de la figure - 2 : libres amorties, libres non amorties.

b- Déterminer la valeur de la période propre T₀ de ces oscillations.

c-Calculer la valeur de l'inductance L de la bobine.

2/ a- Sachant que $u_c(t)=U_m sin(\omega_0 t + \phi)$. Déterminer les valeurs de U_m , ω_0 et ϕ .

b- En déduire l'expression de l'intensité du courant i(t) en fonction de $C,\,U_m,\,\,\omega_0$ et $\phi.$

3/ Sachant que l'énergie électrique $E_e = \frac{1}{2} C u_c^2$ et l'énergie magnétique $E_m = \frac{1}{2} L i^2$.

a- Montrer que:

 $a_1\text{--}$ l'énergie électrique s'écrit : $E_e=\frac{1}{4}CU_m^2[1-cos(2\omega_0t+2\phi)]$

 a_2 - l'énergie magnétique s'écrit : $E_m = \frac{1}{4}CU_m^2[1 + \cos(2\omega_0 t + 2\phi)]$

b- En déduire que l'énergie totale de cet oscillateur $\{E=E_e+E_m\}$ est constante au cours du temps et calculer sa valeur.

c- Les courbes (C₁), (C₂) et (C₃) de la figure -3 représente les énergies : électrique, magnétique et totale.

c₁- Associer à chaque courbe l'énergie correspondante. Justifier.

c₂- Déterminer les valeurs des grandeurs A et B en précisant leurs unités.

