Entraînement sur les tableaux d'avancement

Exercices I

1) Compléter le tableau d'avancement suivant

		2 CO _(g) +	${ m O}_{2({ m g})} \qquad ightarrow$	$2 CO_{2(g)}$
	Avancement (en mol)	n(CO) (en mol)	n(Fe ₃ O ₄) (en mol)	n(CO ₂) (en mol)
Etat initial	$\mathbf{x} = 0$	4,6	3,0	0
En cours (1)	\mathbf{x}_1		$3,0-x_1$	
En cours (2)	$x_2 = 0.8$			
En cours (3)	$x_3 =$			
				3,0

2) Déterminer l'avancement final, puis compléter la dernière ligne du tableau, sur cette feuille : on attend un raisonnement et des explications clairs.

Cidiis.					
Etat final	$X_{max} = \dots$	•••	•••	•••	

³⁾ Quel était le réactif limitant ? Justifier.

Exercice II

On fait réagir de l'ammoniac (NH_3) , qui est un gaz à température ambiante, avec de l'oxygène (O_2) , qui est à l'état gazeux. Les produits de la réaction sont du diazote (N_2) , qui est un gaz à température ambiante et de l'eau (H_2O) , qui est un liquide à température ambiante.

- 1. Écrire l'équation de cette réaction avec des nombres stœchiométriques correctement ajustés.
- 2. On fait réagir 2,55g d'ammoniac avec 10,0 L de dioxygène. Construire le tableau d'avancement et le remplir complètement en expliquant bien la détermination de l'état initial, de l'avancement maximal x_{max}, du réaction limitant et de l'état final (dernière ligne du tableau).
- 3. En déduire la masse d'eau obtenue et le volume de diazote obtenu à 20°C (on a alors V_m = volume molaire des gaz = 24,0 L/mol).

Corrections

Exercice I

Attention de ne pas confondre les quantités de réactifs à l'état initial qui indiquent ce qui est réellement présents, et les coefficients stechiométriques qui indiquent les proportions de ce qui réagit et de ce qui est formé.

1)				
		2 CO _(g) +	$O_{2(g)} \longrightarrow$	$2 CO_{2 (g)}$
	Avancement (en mol)	n(CO) (en mol)	n(Fe ₃ O ₄) (en mol)	n(CO ₂) (en mol)
État initial	$\mathbf{x} = 0$	4,6	3,0	0
En cours (1)	\mathbf{X}_1	$4,6-2.x_1$	$3,0-x_1$	$2.x_1$
En cours (2)	$x_2 = 0.8$	4,6-2.0,8	3,0-0,8 = 2,2	2.0,8
		= 3,0	= 2,2	= 1,6
En cours (3)	$x_3 = 1,5$	4,6 – 2 . 1,5	3,0 – 1,5	
		=1,6	=1,5	3,0

Pour l'état « en cours (1) »:

- s'il reste 3,0 x₁ mol de O₂ alors qu'il y en avait 3,0 à l'état initial, c'est que x₁ mol de O₂ ont réagi à ce stade de la réaction.
- On utilise alors la signification de l'équation-bilan: « 2 moles de molécules de CO réagissent avec 1 mole de molécules O₂ pour former 2 moles de molécules CO₂ ».
- Ou encore « 2.x₁ moles de molécules de CO réagissent avec 1.x₁ moles de molécules O₂ pour former 2.x₁ moles de molécules CO₂ ».
- Puisque 2.x₁ moles de molécules CO ont réagi, c'est qu'il en reste 4,6 2.x₁
- Et puisque 2.x₁ moles de molécules CO₂ ont été formées, il y en a donc 2.x₁ en tout (puisqu'il n'y en avait pas à l'état initial).

Pour l'état « en cours (2) » :

- On sait qu'à ce stade, x₂ = 0,8 mole : on utilise cette valeur et les expressions trouvées à l'état en cours (1) pour calculer les quantités restantes de réactifs et les quantités formées de produits.
- $n(CO)_{restant} = 4.6 2 \cdot 0.8 = 3.0 \text{ mol}$
- $n(O_2)_{restant} = 3.0 0.8 = 2.2 \text{ mol}$
- $n(CO_2)_{formé} = 2 \cdot 0.8 = 1.6 \text{ mol}$

Pour l'état « en cours (3) » :

- On sait qu'à ce stade, 3,0 moles de CO_2 ont été formées. Or $n(CO_2)$ formé = 2.x donc 2 . $x_3 = 3,0$ moles ou $x_3 = 1,5$ mol
- A partir de la valeur de x_3 qu'on vient de trouver, on calcule les quantités restantes de réactifs : $n(CO)_{restant} = 4,6-2.1,5=1,6$ mol et $n(O_2)_{restant} = 3,0-1,5=1,5$ mol

Il est indispensable de rédiger soigneusement cette partie en exposant clairement l'idée de départ (des quantités de matières ne peuvent pas être négatives).

Attention tout de même à ce que ça ne devienne pas « mécanique » c'est-à-dire automatique et fait sans plus aucune réflexion. Il faut s'adapter à chaque cas, qui peut être légèrement différent du précédent.

Si CO est le réactif limitant, on peut aussi dire que O₂ a été mis en excès au début de la réaction et CO en défaut. 2) Les quantités de matière des réactifs diminuent au cours de l'évolution de la réaction, mais elles ne peuvent pas devenir négatives, ce qui se traduit par :

4,6-2 . $x \ge 0$ et $3,0-x \ge 0$. Ou encore $2.x \le 4,6$ et $x \le 3,0$ ou enfin $x \le 2,3$ et $x \le 3,0$.

 x_{max} , l'avancement maximum, est la plus grande valeur de x qui vérifie à la fois ces deux inégalités. C'est donc 2,3 mol : $x_{max} = 2,3$ mol.

La dernière ligne du tableau d'avancement est donc

П	La definere fighe du tableau d'avancement est donc					
	Etat final	$x_{max} = 2,3$	4,6 – 2 . 2,3	3,0-2,3	2 . 2,3 = 4,6	
			= 0	=0,7		

3) Le réactif limitant est donc CO (le monoxyde de carbone) puisque c'est lui dont la quantité atteint zéro en premier. C'est parce que ce réactif vient à manquer que la réaction s'arrête.

Exercice II

- 1) Rappel: ce qu'il faut vérifier pour ajuster les coefficients stœchiométriques (c'est-à-dire « équilibrer » une équation bilan):
- Tous les éléments présent à gauche de la flèche doivent aussi être présents à droite, et inversement.
- Pour chaque élément, il doit y avoir le même nombre d'atomes à gauche et à droite de la flèche
- Il doit y avoir les mêmes charges à gauche et à droite de la flèche.
- 2) Lorsque les quantités de réactif ne sont pas données en mol, la première étape est de calculer les quantités de matière en mol. En effet, le tableau d'avancement ne permet de raisonner que sur des quantités de matières en mol.

A propos du choix de x_{max}: durant la réaction, x augmente, et x_{max} est la plus grande valeur possible, mais qui obéit aux contrainte venant du fait que les quantités de matière de réactifs ne peuvent pas devenir négatives.

Cette question permet de repasser à des quantités mesurables (alors que les quantités de matière en mol ne le sont pas directement).

- 1. $4 \text{ NH}_{3(g)} + 3 \text{ O}_{2(g)} \rightarrow 2 \text{ N}_{2(g)} + 6 \text{ H}_2 \text{O}_{(1)}$
- Calcul des quantités initiales de réactifs :

Pour l'ammoniac NH_{3(g)}: $n_0(NH_3) = \frac{m_{NH_3}}{M_{NH_3}} = \frac{2,55}{14,0+3\times1,00} = \frac{2,55}{17,0} = 0,150 \ mol$.

Pour le dioxygène : $n_0(O_2) = \frac{V(O_2)}{V_{-}} = \frac{10,0}{24,0} = 0,417 \ mol$

étape	avancement	4 NH _{3(g)} +	$3 O_{2(g)} \rightarrow$	$2 N_{2(g)} +$	6 H ₂ O _(l)
État Initial (mol)	x=0	0,150	0,417	0	0
Au cours de la transformation (mol)	X	0,150 - 4.x	0,417 - 3.x	0 + 2.x	0 + 6.x
État Final (mol)	$x_{max} = 0,0375$	0	$0,417 - 3.x_{max}$ =0,417 - 3×0,0375 = 0,305	$2x_{max} = 0.0750$	$6.x_{max} = 6 \times 0.0375 = 0.225$

Recherche de x_{max}: puisque les quantités de matière des réactifs ne peuvent pas devenir négatives bien qu'elles diminuent, on a :

 $\underline{\text{Pour l'ammoniac}}: 0.150 - 4.\text{x} \ge 0 \Leftrightarrow 0.150 \ge 4.\text{x} \Leftrightarrow \frac{0.150}{4} \ge x \Leftrightarrow 0.0375 \ge x \text{ d'où } x \le 0.0375 \text{ mol}$

Pour le dioxygène : 0,417 - 3.x $\ge 0 \Leftrightarrow 0,417 \ge 3.x \Leftrightarrow \frac{0,417}{3} \ge x \Leftrightarrow 0,139 \ge x$ d'où x $\le 0,139$ mol

On choisit pour x_{max} la plus grande valeur possible qui vérifie ces deux inégalités : $x_{max} = 0.0375$ mol et c'est donc l'ammoniac qui est le réactif limitant.

3. Masse d'eau : $m(H_2O) = n(H_2O) \cdot M(H_2O) = 0.225 \times (2 \times 1.00 + 16.0) = 0.225 \times 18.0 = 4.05 g$

Volume de diazote : $V(N_2) = n(N_2) \cdot V_m = 0,0750 \times 24,0 = 1,80 L$.

