Série De Révision N°2

4 Sc

Exercice 1

On considère les trois couples suivants à 25°C:

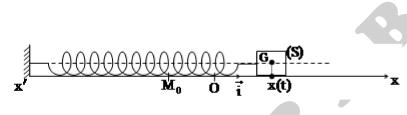
Couple 1 : $HC\ell O / C\ell O^-$: $pKa_1 = 7.3$

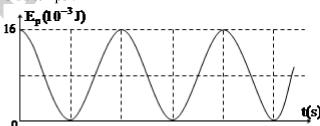
Couple 2 : $C_2H_5NH_3^+ / C_2H_5NH_2$: $Kb_2 = 4,67.10^{-7}$

Couple 3: HCO_2H / HCO_2^- : $Ka_3 = 1,6.10^{-4}$

- 1) Comparer les forces des trois acides et celles des trois bases conjuguées.
- 2) a- Ecrire l'équation de la réaction entre $HC\ell O$ et HCO_2^- .
- b-Exprimer la constante d'équilibre de cette réaction en fonction de pKa₁ et Ka₃ et la calculer.
- c- Montrer que la valeur de cette constante confirme la réponse de la question 1.
- 3) On considère le mélange des espèces prises dans les conditions suivantes :

$$\left[HC\ell O\right] = 10^{-2} \, mol. L^{-1} \; ; \; \left\lceil C\ell O^{-} \right\rceil = 0, 2 \, mol. L^{-1} \; ; \; \left[HCO_{2}H\right] = 0, 2 \, mol. L^{-1} \; ; \; \left\lceil HCO_{2}^{-} \right\rceil = 10^{-2} \, mol. L^{-1}$$

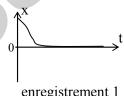

- a- Le système est-il en équilibre ? Sinon dans quel sens évolue-t-il ?
- b- Calculer la composition finale du mélange.
- 4) On élève la température de l'équilibre considéré dans la question (2) de 25°C à 60°C, on constate qu'un nouvel équilibre s'établit caractérisé par la constante K' = 100. En déduire le caractère énergétique de la réaction.

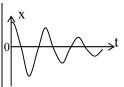

Exercice 2

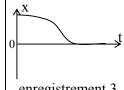
On considère un oscillateur mécanique formé par un solide (S) de masse m = 200 g attaché à un ressort horizontal de raideur $k = 20 \text{ N.m}^{-1}$. On écarte le solide de sa position d'équilibre O jusqu'à le point M_0 d'abscisse $x_0 < 0$ puis on le libère, à la date $t_0 = 0$ s, sans vitesse initiale.

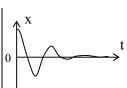
I°/ On suppose que les frottements sont négligeables.

- 1) Etablir l'équation différentielle du mouvement de (S) et en déduire la nature de son mouvement.
- 2) Calculer la période propre T₀ des oscillations de (S).
- 3) Donner l'expression en fonction du temps de l'énergie potentielle E_p du système {ressort, solide (S)}.
- 4) On donne la courbe de l'évolution de l'énergie potentielle au cours du temps :






- a- Comparer la période T des variations de E_p et la période propre T₀ des oscillations de (S).
- b- Déterminer l'équation horaire du mouvement de (S).


II°/ En réalité, le solide (S) est soumis, au cours de son mouvement, à une force de frottement de type visqueux $\vec{f} = -h.\vec{v}$, ou h est une constante positive.

- 1) Etablir la nouvelle équation différentielle pour le variable x.
- 2) Montrer que l'énergie mécanique de l'oscillateur n'est pas conservative.
- 3) On donne, à la même échelle, quatre enregistrements mécaniques traduisant l'évolution de x(t) (avec : $h_1 < h_2 < h_3 < h_4$). Compléter le tableau ci-dessous sachant que l'un de ces diagrammes correspond au retour le plus rapide de (S) vers son état d'équilibre.

• .	-
anragictramant	
enregistrement	

enregistrement 2

enregistrement 3

enregistrement 4

	h	nature du mouvement
enregistrement 1		
enregistrement 2		
enregistrement 3		
enregistrement 4		