
Exercice N°1

On mélange a' t = 0 et a une température T, un volume $V_1 = 0,1$ L d'une solution S_1 d'iodure de potassium de formule chimique KI et de concentration C_1 avec un volume $V_2 = 0,1$ L d'une solution S_2 de peroxodisulfate de potassium de formule chimique $K_2S_2O_8$ et de concentration molaire C_2 . La figure ci-dessous représente la variation de $[S_2O_8^{2-1}]$ dans le mélange au cours du temps :

- 1- Ecrire L'équation de la réaction qui a eu lieu, en précisant les couples redox mis en jeu ;
- 2- Déduire de la courbe le nombre de mole initiale n_0 de $S_2O_8^{2-}$ dans le mélange et calculer C_2 .
- 3- a- Dresser le tableau d'avancement de la réaction.
 - b- Calculer l'avancement final de la réaction.
 - c- Déduire C₁ sachant que le taux l'avancement de la réaction est très proche de 1.
- 4- Déterminer la vitesse volumique moyenne de la réaction entre les instants

$$T_1 = 10 \text{ mn}$$
 et $t_2 = 50 \text{ mn}$

- 5- a- Définir la vitesse volumique instantanée de la réaction.
 - b- Déterminer sa valeur a' t₃ = 25 mn
 - c- Comment varie cette vitesse au cours du temps? Justifier la réponse.
- 6- A un instant **t**₄ on prélève un volume **V**₀ = **10 cm**³ du mélange précédant et on dose les molécules de **I**₂ formées a' l'aide d'une solution **S** se thiosulfate de sodium de formule chimique **Na**₂**S**₂**O**₃ de concentration molaire **C** = **2 10** ⁻² **mol L** ⁻¹. L'équation du dosage est :

$$I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$$

A l'équivalence, le volume de S ajouté est $V = 12 \text{ cm}^3$.

- a- Déterminer la composition du mélange a' t_4 .
- b- En déduire la valeur de t₄.

Exercice N°2

- A- Pour étudier la cinétique de la réaction d'oxydation des ions iodure I^- par les ions peroxodisulfate $S_2O_8^2$ -. On prépare 200 cm³ d'une solution S en mélangeant a' la date $t_0 = 0s$ un volume $V_1 = 0,1$ L d'une solution d'iodure de potassium de molarité $C_1 = 0,8$ mol L^{-1} et un volume $V_2 = 0,1$ L d'une solution de peroxodisulfate de potassium de concentration $C_2 = 0,2$ mol L^{-1} , le mélange est maintenue a température constante.
- 1- Ecrire l'équation de la réaction en précisant les couples redox mis en jeu.
- 2- Calculer les concentrations initiales en ions iodures [l']₀ et en ions péroxodisulfate [S₂O₈²⁻]₀dans la solution **S**. En déduire le réactif qui est en défaut
- 3- A t_1 = 11mn la moitié de la quantité des ions $S_2O_8^{2-}$ initialement présent a réagi.
 - a- Dresser le tableau d'avancement de la réaction.
 - b- Déterminer les concentrations des réactifs et des produits dans le mélange a' l'instant **t**₁.
- 4- Pour déterminer la concentration de diode I_2 dans le mélange on dose a' différents instants des prélèvements de volume $V_0 = 10$ ml chacun par une solution réductrice S_r de thiosulfate de sodium de concentration $C_r = 0.2$ mol L^{-1} .
 - a- Chaque prélèvement effectué et immédiatement dilué avec de l'eau glacée avant le dosage. Pourquoi ? préciser les facteurs cinétiques qui interviennent.
 - b- Ecrire l'équation de la réaction du dosage. Les couples redox intervenant sont I_2/I^- et $S_4O_6^{2-}/S_2O_3^{2-}$.
 - c- Calculer le volume V_r de Sr nécessaire pour ce dosage a' t_2 = 15mn sachant que le mélange renferme a cet instant $n = 12,2 \cdot 10^{-3}$ mol de I_2 ;
- B- L'étude expérimentale a' fournis les résultats suivantes.

t en min	2,5	5	11	15	20	30
[l ₂] en 10 ⁻² mol L ⁻¹	1,5	2,8	5	6,1	7,2	9,1
[l ⁻] en 10 ⁻² mol L ⁻¹						

- 1- Montrer qu'a chaque instant on a $[\Gamma] = [\Gamma]_0 2[\Gamma]_2$.
- 2- Compléter le tableau et tracer sur un papier millimétré la courbe des variations de [l-] en fonction du temps
- 3- A quel instant la vitesse de la réaction est maximale. Calculer sa valeur.
- 4- A quel instant a-t-on $[I_2] = \frac{1}{3} [S_2 O_8^{2-}].$

Exercice N° 3

On se propose d'étudier la cinétique de la réaction d'oxydation des ions iodures I^- par les ions peroxodisulfates $S_2O_8^{2-}$. Pour ce fait, on prépare a' un instant de date t = os un litre

d'une solution renfermant $2 \cdot 10^{-1} \, \text{mol}$ d'iodure de potassium KI et $1,5 \cdot 10^{-1} \, \text{mol}$ de peroxodisulfate de potassium $K_2S_2O_8$.

- 1- Quelle est l'observation qui montre que cette réaction est lente ?
- 2- On suit l'évolution de la réaction en déterminant par dosage la concentration du diode l₂ formé a' différents instants, on effectue des prélèvements que l'on place rapidement dans l'eau glacée. Pourquoi ? préciser le ou les facteurs cinétiques qui interviennent.
- 3- Le tableau suivant représente les variations de la molarité de diode l₂ formé au cours du temps

t en min	0	5	15	30
[l ₂] en 10 ⁻² mol L ⁻¹	0	3, 2	7,5	10

- a- En considérant que la réaction est totale, déterminer l'avancement final $\mathbf{X}_{\mathbf{f}}$ de la réaction.
- b- Déterminer la valeur de la vitesse de la réaction
- Entre les instants t = 0 et t = 15 mn.
- Entre les instants t = 15 mn et t = 30 mn.
 Comparer ces deux valeurs, interpréter.
- c- Déterminer la valeur de la vitesse de la réaction a' l'instant t = 30 mn.
- 4- Le diode formé dans chaque prélèvement de volume $V_0 = 20 \text{ ml}$ est dosé par une solution de thiosulfate de sodium $Na_2S_2O_3$ de concentration molaire $C = 2 \cdot 10^{-1} \text{ mol L}^{-1}$
 - a- Ecrire l'équation de la réaction de dosage, sachant que les couples redox sont :

$$I_2/I^-$$
 et $S_4O_6^{2-}/S_2O_3^{2-}$

b- Exprimer le volume V de la solution de thiosulfate de sodium versé a' l'équivalence pour chaque dosage en fonction de C, V₀ et [I₂]. En déduire le volume V nécessaire a' t = 15 mn.

Exercice N° 4

Les ions iodate IO_3^- contenus dans une solution (S_1) d'iodate de potassium KIO_3 de volume $V_1 = 50$ ml et de concentration molaire $C_1 = 1,2$ mol L^{-1} oxydent lentement les ions iodure I^- contenus dans une solution (S_2) d'iodure de potassium KI de volume $V_2 = 50$ ml et de concentration molaire $C_2 = 2$ mol L^{-1} .

Cette réaction est modélisée par l'équation suivante ;

$$10_3^- + 51^- + 6H_30^+ \longrightarrow 3I_2 + 9H_20$$

- 1- Préciser le caractère cinétique de la réaction.
- 2- a- Déterminer les quantités de matière initiale \mathbf{n}_{01} et \mathbf{n}_{02} respectivement des ions iodate $\mathbf{IO_3}^-$ et iodure \mathbf{I}^- .

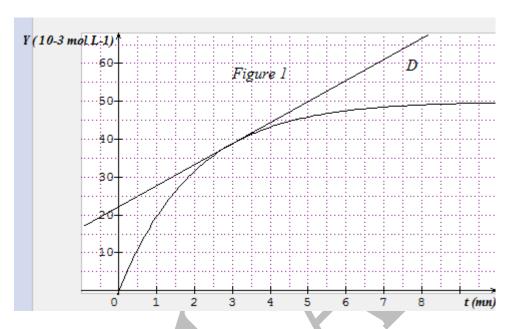
b-Préciser le rôle joué par l'ion $\mathbf{H}_3\mathbf{0}^+$ dans cette réaction. Justifier votre réponse.

- 3- a- Dresser le tableau d'avancement
 - b- Déterminer l'avancement maximal, **X**_{max} de la réaction.
 - c- Déduire alors le réactif limitant.
- 4- Lorsque la réaction est terminée, on dose la quantité de I_2 , contenue dans un prélèvement de volume $V_p = 2mI$ du mélange, a' l'aide d'une solution de thiosulfate de sodium $Na_2S_2O_3$ de concentration molaire $C_0 = 0.2$ mol L^{-1} en présence d'empois d'amidon.

Le volume ajouté pour atteindre l'équivalence est $V_0 = 12 \text{ ml}$;

- a- Ecrire l'équation de la réaction de dosage sachant qu'elle met en jeu les couples redox I_2/I^- et $S_4O_6^{2-}/S_2O_3^{2-}$.
- b- Quelle est l'observation qui fait fin au dosage.
- c- Montrer qu'a l'état final, la quantité de I_2 , présent dans le mélange réactionnel, vérifie la relation suivante : $n(I_2) = C_0 V_0 (V_1 + V_2) / 2V_p$
- d- Déduire l'avancement final X_f de la réaction.
- e- Comparer X_f et X_{max}. Conclure.

Exercice N° 5


On donne $M_{(Mg)} = 24 \text{ g mol}^{-1}$

L'attaque du magnésium par une solution aqueuse d'acide chlorhydrique est modélisée par l'équation $Mg + 2H_3O^+ \longrightarrow Mg^{2+} + H_2 + 2H_2O$

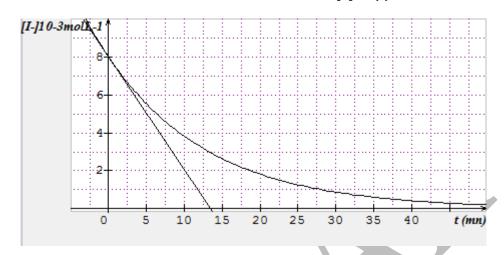
A une température T_1 , et a' la date t = 0 mn, on laisse tomber 1 g de magnésium solide dans un volume V = 30 ml d'une solution d'acide chlorhydrique de concentration molaire C = 0.1 mol L^{-1} . Le suivi temporel de l'avancement volumique $y = \frac{X}{V}$ donne la courbe de la figure 1.

- (Δ) est la tangente a' la courbe y = f(t) a' l'instant t = 3min.
- 1- Dresser le tableau d'avancement
- 2- a- Relever a' partir du graphe, la valeur de l'avancement volumique final Y_f
 - b- Déduire le temps $t_{1/2}$ de demi-réaction.
- 3- Définir la vitesse volumique moyenne de la réaction et la calculer entre l'état initial et l'état final.
- 4-a- Calculer la vitesse de la réaction a' l'instant **t = 3 mn**, tout en expliquant la méthode utilisée.
- b- Comparer la valeur de la vitesse trouvée a' la valeur de la vitesse de la réaction a' l'état final. Conclure et interpréter.

5- Représenter, sur la figure 1, la nouvelle allure de la courbe si la réaction se déroule a' une température $T_2 > T_1$.

Exercice N° 6

On mélange a' la date t = 0 min, $V_1 = 200$ ml d'une solution (S_1) de ($K^+ + \Gamma$) de concentration molaire C_1 avec $V_2 = 300$ ml d'une solution de ($2K^+ + S_2O_8^{2-}$) de concentration $C_2 = 0.01$ mol L^{-1} .


Il se passe alors une réaction lente et totale d'équation

$$2l^{-} + S_2O_8^{2-} \rightarrow I_2 + 2SO_4^{2-}$$

L'étude expérimentale a permis de tracer la courbe ci-dessous donnant [I] = f(t).

- 1- a- Préciser les couples redox mis en jeu au cours de cette réaction.
 - b- Déterminer le nombre de moles initiales $\mathbf{n_1}$ d'ion iodure I- puis déduire la valeur de $\mathbf{C_1}$.
- 2- a- Dresser le tableau d'avancement de cette réaction.
 - b- Définir le temps de demi-réaction $t_{1/2}$.
 - c- Sachant que la valeur de $\mathbf{t}_{1/2} = \mathbf{10}$ mn. Déterminer l'avancement de la réaction a' cet instant.
 - d- Montrer que l'est le réactif limitant?
- 3- Déterminer la composition en moles du mélange a' t_1 = 20 mn.
- 4- a- Définir la vitesse de la réaction a une date t.
 - b- Etablir son expression en fonction du volume V du mélange et de d[I]/dt.
 - c- Déterminer sa valeur maximale
 - d- En se basant sur un facteur cinétique expliqué comment varie cette vitesse au cours du temps ?

- 5- Calculer la vitesse volumique moyenne entre $t_0 = 0$ et $t_1 = 20$ mn.
- 6- Cette expérience est refaite en présence des ions $\mathbf{Fe}^{\mathbf{2+}}$.
 - a- Quel est le rôle joué par les ions Fe²⁺ au cours de cette réaction ?
 - b- Tracer la nouvelle allure de la courbe donnant [l] = f(t).

