L. Avicenne Gafsa	SCIENCES PHYSIQUES	CLASSE: 3 eme
	Massle Cinómatique	
PROF : M ^{ed} GHARBIA	Alcools_Cinématique	DATE : //2014

CHIMIE U

Exercice 1:

Un flacon porte l'indication « Alcool C4 H10 O »

- 1°) Dire pourquoi cette indication est insuffisante pour savoir quel est l'alcool contenu dans ce flacon .
- 2°) Le tableau suivant regroupe les alcools isomères de formule brute C_4 H_{10} O.

Alcool	(A)	(B)	(C)	(D)
Formule semi	CH ₃ -CH ₂ -CH ₂ -CH ₂ -		CH ₃ -CH-CH ₂ -OH	
développée	ОН		CH₃	
Noms		Butan-2-Ol		2-méthylpropan-2- Ol
Classe de l'alcool	Primaire			

Reproduire et compléter ce tableau.

3°) Pour déterminer la classe de l'alcool contenu dans le flacon , on réalise son oxydation ménagée par une solution de bichromate potassium K_2 Cr_2 O_7 en milieu acide .

On obtient un produit (E) qui donne :

- * un précipité jaune avec la 2,4 -dinitrophénylhdrazine (2,4-DNPH);
- * une coloration rose avec le réactif de schiff.
 - a Préciser en le justifiant :
- * le groupe fonctionnel et la famille du produit (E);
- * la classe de l'alcool contenu dans le flacon.
- b Parmi les alcools (A), (B), (C) et (D), préciser ceux dont le produit de l'oxydation ménagée donne les résultats précédents avec la 2,4-DNPH et le réactif de schiff.
 - 4°) Sachant que l'alcool contenu dans le flacon est à chaîne carbonée ramifiée :
 - a Identifier cet alcool;
 - b Ecrire l'équation de la réaction permettant d'obtenir (E) en formule brute.
 - c Donner la formule semi développé de (E)

Exercice 2 L'analyse élémentaire d'un composé organique (A) : $C_xH_yO_z$ montre qu'il renferme 52,17 % en masse de carbone et 34,78 % en masse d'oxygène .

On réalise la combustion complète d'une quantité de (A) de masse m; on obtient 1,92 L de d'dioxyde de carbone .

- 1°) Ecrire l'équation de la réaction en fonction de x , y et z .
- 2°) a Sachant que la masse molaire de A est $M = 46g \text{ mol}^{-1}$. Déterminer sa formule brute.
 - b Déterminer la masse m.
 - c Calculer le volume de dioxygène nécessaire pour la réaction de combustion.
- 3°) a Donner les formules semi développés possible de (A).
 - b Préciser le nom et la classe de l'isomère alcool.
 - c Ecrire l'équation de la réaction de déshydratation intramoléculaire de l'isomère alcool . Donner le nom du produit obtenu et préciser les conditions expérimentales .

GHARBIA MOHAMED

LES ALCOOLS-Cinématique

GSM(41)577288

Exercice 3

1°) Donner le nom et la classe des deux mono alcools suivant :

$$(A_1): CH_3 - CH - CH_2 - CH_2 - OH_3$$

$$(A_2): CH_3 - CH - CH_3$$

I CH₃ I O H

2°) L'oxydation ménagée de (A_1) donne en première étape un composé (B_1) .

L'oxydation ménagé de (A_2) donne un composé (B_2) .

a - Compléter le tableau suivant :

Composé	B ₁	B ₂
Test avec le 2,4 DNPH		
Test avec le réactif de		
shift		

- b Donner la formule semi développée et le nom de (B_1) et (B_2) .
- c Ecrire en formules brutes l'équation d'oxydation ménagée de (A_2) en présence des ions bichromates en milieu acide . Préciser les couples redox mis a jeu .

PHYSIQUE

Exercice 1

m

Un mobile ponctuel se déplace dans un plan il est repéré par ses coordonnées dans un repère $R(o,\vec{i}\,,\vec{j})$

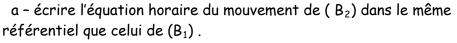
Son vecteur vitesse instantanée est $\vec{V} = 5\vec{i} + (-10t + 10)\vec{j}$.

A l'instant t_1 = 2s il passe par le point M_1 de coordonnées : $(x_1 = 10m ; y_1 = 10 m)$

- 1°) Etablir les lois horaires du mouvement .
- 2°) a Déterminer l'équation cartésienne de la trajectoire .
 - b Représenter la trajectoire du mobile entre les instants t_0 = 0s et t_2 = 2,73 s .

Echelle: 1 cm correspond à 2 m.

- 3°) a Déterminer le vecteur accélération instantanée \vec{a}
 - b- Le rayon de courbure de la trajectoire au point M_2 d'abscisse x_2 = 13,66 m est R_2 = 10,06


 b_1 : Déterminer les composantes normales a_N et tangentielle a_{t} au point M_2 .

 b_2 : En déduire l'angle a entre le vecteur vitesse et le vecteur accélération en $\ensuremath{\text{M}}_2$

Exercice 2On prendra $\|\vec{g}\| = 10m.s^{-2}$

On lance une première bille (B_1) verticalement vers le haut à partir d'un point O situé à 1m au dessus du sol avec une vitesse $Vo_1 = 8m \ s^{-1}$.

- 1°) Ecrire l'équation horaire du mouvement en prenant comme origine des espaces le point O
- et comme origine des dates l'instant de lancement de (B_1) . a - montrer que le mouvement de (B_1) comporte 2 phases.
 - b déterminer la hauteur maximale par rapport au sol atteinte par (B1)
- 3°) Une deuxième bille (B₂) est lancée verticalement à partir du sol ; mais une seconde plus tard par rapport à la date du lanceur de (B₁) avec une vitesse V_{02} = 7 m s^{-1} sol

b- déterminer les lieux et les dates des rencontres de 2 mobiles.

GHARBIA MOHAMED

LES ALCOOLS-Cinématique

GSM(41)577288

1m