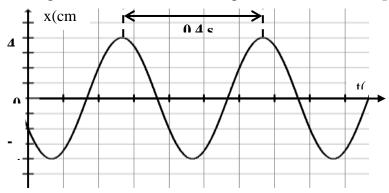
Lycée Maknassy

Serie N°9: Mouvement rectiligne sinusoidal

🖎 ALIBI .A.

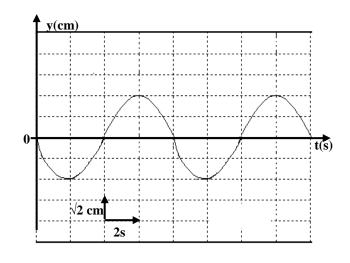

2010-2011

- 3 ^{éme}SC -

Sc.physiques

EXERCICE 1

Un solide supposé ponctuel est attaché à un ressort à l'instant $\mathbf{t} = \mathbf{0}$; le solide est ramené au point d'abscisse \mathbf{x}_0 ; on lui communique une vitesse $\vec{V_0}$ et on l'abandonne à lui-même, il effectue donc un mouvement rectiligne sinusoïdal dont l'enregistrement est donné par la figure suivante.



- 1°) a En exploitation l'enregistrement déterminer :
 - *la pulsation du mouvement ω .
 - *l'élongation initiale x_0 .
 - *l'amplitude X_m .
 - *la phase initiale φ .
 - b En déduire la loi horaire x = f(t).
 - 2°) a Déterminer l'expression de la vitesse en fonction du temps.
 - b En déduire la valeur algébrique de la vitesse initiale \vec{V}_0 .
- 3°) A l'instant t_1 > o; le mobile **repasse** pour la **première fois** par la position d'abscisse x_0 dans le sens négatif .a- Déterminer graphiquement t_1 .
 - b-Retrouver t_1 par le calcul.
- 4°) Déterminer la valeur algébrique de vitesse du solide lors de son premier passage par la position d'abscisse **x** = **2 cm**

EXERCICE 2

L'enregistrement mécanique d'un mouvement rectiligne sinusoïdal d'un mobile M donne le graphe suivant :

- 1).- Déterminer graphiquement :
- a-l'amplitude du mouvement Y_m
- b-la période T en déduire la fréquence N.
- 2) a- Déterminer la loi horaire y(t) du mouvement.
- **b-** Déduire l'expression de la vitesse v(t).
- **c-** Déterminer la différence de phase $\Delta \phi = \phi_{\rm v} \phi_{\rm v}$
- 3°) a- Montrer que : $(v^2/w^2) + y^2 = y_m^2$
- **b-** Déterminer les vitesses du mobile au passage par le point $y = 2\sqrt{2}$ cm.
- **4°)** Sachant que l'accélération s'écrit $a(t) = -w^2 \cdot y(t)$.
- **a-** préciser à t = 5 s, le signe de a(t) et v(t)
- **b-** En déduire la nature du mouvement du mobile à cette date.

